Skip to main content
Log in

Minimizing optical losses in bulk heterojunction polymer solar cells

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The efficiency that a solar cell can reach is ultimately limited by the number of photons absorbed in its active layer. Bulk heterojunction polymer solar cells are fabricated from a stack of thin film layers, each of which is thinner than a single wavelength from an incident photon within its absorption band. One consequence of this thin film layer stack is a strong optical interference between the various layers that can change the quantity of light dissipated in the active layer by 50%. Here we use optical modeling to quantitatively calculate the dissipation in each of the various layers as functions of wavelength and layer thickness. Using this information the loss free short circuit current density can be calculated (Jscmax). Optimization of Jscmax leads to direct improvements in the efficiency of the solar cell through improved light dissipation in the active layer. The optical properties for a P3HT:PCBM active layer and a model Lorentzian low band gap spectrum are optimized and ideal fabrication conditions are reported for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Nature 376, 498 (1995)

    Article  Google Scholar 

  2. K.M. Coakley, M.D. McGehee, Chem. Mater. 16, 4533 (2004)

    Article  Google Scholar 

  3. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  Google Scholar 

  4. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004)

    Article  Google Scholar 

  5. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474 (1992)

    Article  Google Scholar 

  6. D.E. Markov, E. Amsterdam, P.W.M. Blom, A.B. Sieval, J.C. Hummelen, J. Phys. Chem. A 109, 5266 (2005)

    Article  Google Scholar 

  7. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen, Appl. Phys. Lett. 78, 841 (2001)

    Article  Google Scholar 

  8. J.K.J. van Duren, X.N. Yang, J. Loos, C.W.T. Bulle-Lieuwma, A.B. Sieval, J.C. Hummelen, R.A.J. Janssen, Adv. Funct. Mater. 14, 425 (2004)

    Article  Google Scholar 

  9. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)

    Article  Google Scholar 

  10. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater. 4, 864 (2005)

    Article  Google Scholar 

  11. M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005)

    Article  Google Scholar 

  12. L.A.A. Pettersson, L.S. Roman, O. Inganas, J. Appl. Phys. 86, 487 (1999)

    Article  Google Scholar 

  13. J.G. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 85, 5757 (2004)

    Article  Google Scholar 

  14. J. Drechsel, B. Mannig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, Appl. Phys. Lett. 86, 244102 (2005)

    Article  Google Scholar 

  15. H. Hoppe, N. Arnold, N.S. Sariciftci, D. Meissner, Sol. Ener. Mater. Solar Cells 80, 105 (2003)

    Article  Google Scholar 

  16. A.J. Moulé, J.B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503 (2006)

    Article  Google Scholar 

  17. E. Hecht, Optics, 4th. ed. (Pearson, San Francisco, 2002)

  18. C.M. Ramsdale, N.C. Greenham, J. Phys. D Appl. Phys. 36, L29 (2003)

    Article  Google Scholar 

  19. L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett. 88, 052104 (2006)

    Article  Google Scholar 

  20. L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, P.W.M. Blom, Phys. Rev. B 72, 085205 (2005)

    Article  Google Scholar 

  21. A.J. Moule, K. Meerholz, submitted to Appl. Phys. Lett. (2006)

  22. B.P. Rand, J.G. Xue, F. Yang, S.R. Forrest, Appl. Phys. Lett. 87, 200508 (2005)

    Article  Google Scholar 

  23. M.M. Wienk, M.G.R. Turbiez, M.P. Struijk, M. Fonrodona, R.A.J. Janssen, Appl. Phys. Lett. 88, 153511 (2006)

    Article  Google Scholar 

  24. S. Zhang, P.W. Cyr, S.A. McDonald, G. Konstantatos, E.H. Sargent, Appl. Phys. Lett. 87, 233101 (2005)

    Article  Google Scholar 

  25. E. Arici, H. Hoppe, F. Schaffler, D. Meissner, M.A. Malik, N.S. Sariciftci, Appl. Phys. A 79, 59 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Meerholz.

Additional information

PACS

72.40.+w; 72.80.Le

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulé, A., Meerholz, K. Minimizing optical losses in bulk heterojunction polymer solar cells. Appl. Phys. B 86, 721–727 (2007). https://doi.org/10.1007/s00340-006-2542-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2542-1

Keywords

Navigation