Skip to main content
Log in

Raman effects in the infrared supercontinuum generation in soft-glass PCFs

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Measurements of the Raman gain spectra in the SF6 and SF57 highly nonlinear glasses demonstrated twice as high Raman shift in comparison with the fused silica. Numerical simulation predicted that a large Raman shift in combination with high nonlinearity can significantly reduce the required input pulse intensity for supercontinuum in these glasses, retaining the necessary degree of coherence. We found that the degradation of the SC coherence due to Raman soliton jitter can be effectively controlled by a correct choice of input intensity and fiber length. Also it was found that a high degree of coherence correlates with the spectrum shape in the vicinity of the Raman threshold, providing an convenient experimental observable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Phys. Rev. Lett. 85, 2264 (2000)

    Article  ADS  Google Scholar 

  2. D.A. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  3. A. Baltuska, Z. Wei, M.S. Pschenichnikov, D.A. Wiersma, R. Szipocs, Appl. Phys. B 65, 175 (1997)

    Article  ADS  Google Scholar 

  4. R.R. Alfano (Ed.), The Supercontinuum Laser Sorce (Springer, New York, 1989)

  5. P. Russell, Nature 299, 358 (2003)

    Google Scholar 

  6. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  7. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)

    Google Scholar 

  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakov, D. Nickel, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, G. Korn, Phys. Rev. Lett. 88, 173901 (2002)

    Article  ADS  Google Scholar 

  9. V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, V.V.R. Kanth Kumar, A.K. Georgem, Appl. Phys. B 79, 591 (2004)

    Article  ADS  Google Scholar 

  10. N. Nishizava, T. Goto, Japan. J. Appl. Phys. 40, L365 (2001)

    Article  ADS  Google Scholar 

  11. K. Saitoh, M. Koshiba, Opt. Express 12, 2027 (2004)

    Article  ADS  Google Scholar 

  12. J. Chen, F.Ö. Ilday, F.X. Kärtner, Soliton self-frequency shift from 1.03 μm to 1.55 μm, in Advanced Solid-State Photonics 2006 Technical Digest (The Optical Society of America, Washington, DC, 2006), TuB9

  13. V.V.R. Kanth Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A.J. Taylor, Opt. Express 10, 1520 (2002)

    ADS  Google Scholar 

  14. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V.V.R. Kanth Kumar, A.K. George, J.C. Knight, P.S.J. Russell, Opt. Express 11, 3196 (2003)

    ADS  Google Scholar 

  15. I. Cristiani, R. Tediosi, L. Tartara, V. Degiorgio, Opt. Express 12, 124 (2004)

    Article  ADS  Google Scholar 

  16. J.M. Dudley, S. Coen, Opt. Lett. 27, 1180 (2002)

    ADS  Google Scholar 

  17. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Phys. Rev. Lett. 90, 113904 (2003)

    Article  ADS  Google Scholar 

  18. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, B.R. Washburn, K. Weber, R.S. Windeler, Appl. Phys. B 77, 269 (2003)

    Article  ADS  Google Scholar 

  19. S. Naumov, E. Sorokin, V.L. Kalashnikov, G. Tempea, I.T. Sorokina, Appl. Phys. B 76, 1 (2003)

    Article  ADS  Google Scholar 

  20. R. Stegeman, C. Rivero, K. Richardson, G. Stegeman, P. Delfyett, Y. Guo, A. Pope, A. Schulte, T. Cardinal, P. Thomas, J.C. Champarnaud-Mesjard, Opt. Express 13, 1144 (2005)

    Article  ADS  Google Scholar 

  21. P.H. Pantell, H.E. Puthoff, Fundamentals of Quantum Electronics (Wiley, New York, 1969)

    Google Scholar 

  22. C. Rivero, R. Stegeman, M. Couzi, D. Talaga, T. Cardinal, K. Richardson, G. Stegeman, Opt. Express 13, 4759 (2005)

    Article  ADS  Google Scholar 

  23. W.D. Johnston Jr., I.P. Kaminow, J.B. Bergman, Appl. Phys. Lett. 13, 190 (1968)

    Article  ADS  Google Scholar 

  24. R.H. Stolen, E.P. Ippen, Appl. Phys. Lett. 22, 276 (1973)

    Article  ADS  Google Scholar 

  25. I.T. Sorokina, E. Sorokin, E. Wintner, A. Cassanho, H.P. Jenssen, OSA Trends Opt. Photon. 19, 359 (1998)

    Google Scholar 

  26. D. Heiman, R.W. Hellwarth, D.S. Hamilton, J. Non-Cryst. Solids 34, 63 (1979)

    Article  ADS  Google Scholar 

  27. Y. Lai, H.A. Haus, Phys. Rev. A 40, 844 (1989)

    Article  ADS  Google Scholar 

  28. H.W. Lee, Phys. Rep. 259, 147 (1995)

    Article  MathSciNet  Google Scholar 

  29. S.J. Carter, Phys. Rev. A 51, 3274 (1995)

    Article  ADS  Google Scholar 

  30. P.D. Drummond, J.F. Corney, J. Opt. Soc. Am. B 18, 139 (2001)

    ADS  Google Scholar 

  31. F.X. Kärtner, D.J. Dougherty, H.A. Haus, E.P. Ippen, J. Opt. Soc. Am. B 11, 1267 (1994)

    ADS  Google Scholar 

  32. E. Serebryannikov, C. Rivero, R. Stegeman, A. Zheltikov, J. Opt. Soc. Am. B, unpublished

  33. J.F. Corney, P.D. Drummond, J. Opt. Soc. Am. B 18, 153 (2001)

    ADS  Google Scholar 

  34. B. Kibler, J.M. Dudley, S. Coen, Appl. Phys. B 81, 337 (2005)

    Article  ADS  Google Scholar 

  35. E.E. Serebrynnikov, A.M. Zheltikov, J. Opt. Soc. Am. B 23, 1882 (2006)

    Article  ADS  Google Scholar 

  36. J.Y.Y. Leong, P. Petropoulos, J.H.V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R.C. Moore, K.E. Frampton, V. Finazzi, X. Feng, T.M. Monro, D.J. Richardson, J. Lightwave Technol. 24, 183 (2006)

    Article  ADS  Google Scholar 

  37. X. Gu, M. Kimmel, A.P. Shreenath, R. Trebino, J.M. Dudley, S. Coen, R.S. Windeler, Opt. Express 11, 2697 (2003)

    Article  ADS  Google Scholar 

  38. F. Lu, W.H. Knox, Opt. Express 12, 347 (2004)

    Article  ADS  Google Scholar 

  39. B.R. Washburn, N.R. Newbury, Opt. Express 12, 2166 (2004)

    Article  ADS  Google Scholar 

  40. A.E. Siegman, Phys. Rev. A 39, 1264 (1989)

    Article  ADS  Google Scholar 

  41. H.A. Haus, J. Opt. Soc. Am. B 8, 1122 (1991)

    Article  ADS  Google Scholar 

  42. H.A. Haus, IEEE J. Quantum Electron. 29, 983 (1993)

    Article  ADS  Google Scholar 

  43. H.A. Haus, M. Margalit, C.X. Yu, J. Opt. Soc. Am. B 17, 1240 (2000)

    ADS  Google Scholar 

  44. C.H. Henry, R.F. Kazarinov, Rev. Mod. Phys. 68, 801 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.L. Kalashnikov.

Additional information

PACS

42.65.Tg; 42.81.Dp; 42.72.Ai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalashnikov, V., Sorokin, E. & Sorokina, I. Raman effects in the infrared supercontinuum generation in soft-glass PCFs. Appl. Phys. B 87, 37–44 (2007). https://doi.org/10.1007/s00340-006-2545-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2545-y

Keywords

Navigation