Skip to main content
Log in

Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A theoretical model based on the rate equation for free electron density is proposed to investigate transient progression of plasma formation in soft biological tissues during laser shock processing. The laser focusing region around the focus point is considered to be one-dimensional along the direction of the incident beam, and is discretized into numerous thin control volumes. In simulation of the transient plasma progression, the laser intensity distribution and the temporal evolution of the free electron density are calculated sequentially for each control volume using a fourth-order Runge–Kutta method with adaptive time step control. The rate-equation formalism is first validated with previously published theoretical and experimental results. Simulation of the dynamics of plasma formation is then performed. The results include temporal evolution and spatial distribution of the free electron density as well as the growth of the plasma. It is shown that the threshold laser intensity for optical breakdown in water and the maximum length of the resulting plasma obtained from the present model are in good agreement with existing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Steinert, C.A. Puliafito, The Nd:YAG Laser in Ophthalmology (Saunders, Philadelphia, PA, 1985)

    Google Scholar 

  2. A. Vogel, Phys. Med. Biol. 42, 895 (1997)

    Article  Google Scholar 

  3. G.M. Watson, S. Murray, S.P. Dretler, J.A. Parrish, J. Urol. 138, 195 (1987)

    Google Scholar 

  4. M.R. Prince, G.M. LaMuraglia, P. Teng, T.F. Deutsch, R.R. Anderson, IEEE J. Quantum Electron. QE-23, 1783 (1987)

    Article  ADS  Google Scholar 

  5. B. Zysset, J.G. Fujimoto, T.F. Deutsch, Appl. Phys. B 48, 139 (1989)

    Article  ADS  Google Scholar 

  6. J. Noack, D.X. Hammer, G.D. Noojin, B.A. Rockwell, A. Vogel, J. Appl. Phys. 83, 7488 (1998)

    Article  ADS  Google Scholar 

  7. C.B. Schaffer, N. Nishimura, E.N. Glezer, A.M.T. Kim, E. Mazur, Opt. Express 10, 196 (2002)

    ADS  Google Scholar 

  8. T. Tomaru, H.J. Geschwind, G. Boussignac, F. Lange, S.J. Tahk, Am. Heart J. 123, 896 (1992)

    Google Scholar 

  9. A.G. Doukas, D.J. McAucliff, T.J. Flotte, Ultrasound Med. Biol. 19, 137 (1993)

    Google Scholar 

  10. T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, W.E. Bron, Lasers Surg. Med. 19, 23 (1996)

    Google Scholar 

  11. J. Noack, A. Vogel, Appl. Opt. 37, 4092 (1998)

    ADS  Google Scholar 

  12. R. Petkovšek, J. Možina, G. Moènik, Opt. Express 13, 4107 (2005)

    Article  ADS  Google Scholar 

  13. R. Petkovšek, G. Moènik, J. Možina, Fluid Phase Equil. 256, 158 (2007)

  14. C.B. Schaffer, N. Nishimura, E.N. Glezer, E. Mazur, Proc. SPIE 3269, 36 (1998)

    Article  ADS  Google Scholar 

  15. A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996)

    Article  ADS  Google Scholar 

  16. S.J. Gitomer, R.D. Jones, IEEE Trans. Plasma Sci. 19, 1209 (1991)

    Article  ADS  Google Scholar 

  17. M.H. Niemz, Laser–Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2002)

    Google Scholar 

  18. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  19. F. Dausinger, F. Lichtner, H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, Berlin, 2004)

    Google Scholar 

  20. A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005)

    Article  ADS  Google Scholar 

  21. K. Nahen, A. Vogel, IEEE J. Sel. Top. Quantum Electron. 2, 861 (1996)

    Article  Google Scholar 

  22. F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3661 (1988)

    Article  ADS  Google Scholar 

  23. F. Docchio, P. Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27, 3669 (1988)

    ADS  Google Scholar 

  24. P.K. Kennedy, IEEE J. Quantum Electron. QE-31, 2241 (1995)

    Article  ADS  Google Scholar 

  25. P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W.P. Roach, IEEE J. Quantum Electron. QE-31, 2250 (1995)

    Article  ADS  Google Scholar 

  26. A. Sollier, L. Berthe, R. Fabbro, Eur. Phys. J. Appl. Phys. 16, 131 (2001)

    Article  ADS  Google Scholar 

  27. A. Vogel, J. Noack, G. Hüttmann, G. Paltauf, Proc. SPIE 4633, 23 (2002)

    Article  ADS  Google Scholar 

  28. J. Noack, A. Vogel, IEEE J. Quantum Electron. QE-35, 1156 (1999)

    Article  ADS  Google Scholar 

  29. F. Docchio, C.A. Sachhi, J. Marshall, Lasers Ophthalmol. 1, 83 (1986)

    Google Scholar 

  30. A.E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986)

    Google Scholar 

  31. A. Vogel, K. Nahen, D. Theisen, J. Noack, IEEE J. Sel. Top. Quantum Electron. 2, 847 (1996)

    Article  Google Scholar 

  32. D. Horvat, R. Petkovšek, J. Možina, Appl. Phys. B 88, 463 (2007)

    Article  ADS  Google Scholar 

  33. F. Docchio, Europhys. Lett. 6, 407 (1988)

    Article  ADS  Google Scholar 

  34. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Fannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, UK, 1992)

  35. G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)

    Article  ADS  Google Scholar 

  36. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D.X. Hammer, G.D. Noojin, B.A. Rockwell, R. Birngruber, Appl. Phys. B 68, 271 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.K. Chen.

Additional information

PACS

42.65.-k; 52.38.-r; 87.80.-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Chen, J. & Zhang, Y. Numerical modeling of transient progression of plasma formation in biological tissues induced by short laser pulses. Appl. Phys. B 90, 141–148 (2008). https://doi.org/10.1007/s00340-007-2843-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2843-z

Keywords

Navigation