Skip to main content
Log in

Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Active remote sensing is a promising technique to close the gaps that exist in global measurement of atmospheric carbon dioxide sources, sinks and fluxes. Several approaches are currently under development. Here, an experimental setup of an integrated path differential absorption lidar (IPDA) is presented, operating at 1.57 μm using direct detection. An injection seeded KTP-OPO system pumped by a Nd:YAG laser serves as the transmitter. The seed laser is actively stabilized by means of a CO2 reference cell. The line-narrowed OPO radiation yields a high spectral purity, which is measured by means of a long path absorption cell. First measurements of diurnal variations of the atmospheric CO2 mixing ratio using a topographic target were performed and show good agreement compared to simultaneously taken measurements of an in situ device. A further result is that the required power reference measurement of each laser pulse in combination with the spatial beam quality is a critical point of this method. The system described can serve as a testbed for further investigations of special features of the IPDA technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller, IPCC 2007: Climate Change 2007: The Physical Science Basis (Cambridge University Press, Cambridge, 2007)

  2. S. Houweling, F.-M. Bréon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, P. Ciais, Atmosph. Chem. Phys. 4, 523 (2004)

    ADS  Google Scholar 

  3. C. Rödenbeck. S. Houweling, M. Gloor, M. Heimann, Atmosph. Chem. Phys. 3, 1919 (2003)

    Article  ADS  Google Scholar 

  4. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, S. Houweling, Appl. Phys. B 90, 593 (2008)

    Article  ADS  Google Scholar 

  5. S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.J. Reolofs, F.M. Breon, Atmosph. Chem. Phys. 5, 3003 (2005)

    ADS  Google Scholar 

  6. R.J. Engelen, G.L. Stephens, J. Appl. Met. 43, 373 (2004)

    Google Scholar 

  7. G. Ehret, C. Kiemle, Final Report of ESA Study 10880/03/NL/FF (2005)

  8. F.M. Bréon, P. Peylin, Final Report of ESA Study 15247/01/NL/MM (2003)

  9. C. Weitkamp, Lidar: Range Resolved Optical Remote Sensing of the Atmosphere (Springer, Berlin Heidelberg New York, 2005)

    Google Scholar 

  10. G.J. Koch, B.W. Barnes, M. Petros, J.Y. Beyon, F. Amzajerdian, J. Yu, R.E. Davis, S. Ismail, S. Vay, M.J. Kavaya, U.N. Singh, Appl. Opt. 43, 5092 (2004)

    Article  ADS  Google Scholar 

  11. F. Gibert, P.H. Flamant, D. Bruneau, C. Loth, Appl. Opt. 45, 4448 (2006)

    Article  ADS  Google Scholar 

  12. S. Ismail, G.J. Koch, M.N. Abedin, T. Refaat, K. Davis, C. Miller, U.N. Singh, S. Vay, T. Mack, in Proceedings of 23rd International Laser Radar Conference (2006), pp. 349–352

  13. G.D. Spiers, R.T. Menzies, D.M. Tratt, M. Phillips, in Proceedings of 2nd Annual Earth Science Technology Conference (NASA Earth Science Technology Office, Greenbelt, 2002)

  14. M.A. Krainak, A.E. Andrews, G.R. Allan, J.F. Burris, H. Riris, X. Sun, J.B. Abshire, in Conference on Lasers and Electro-Optics, CLEO ’03 (2003)

  15. J. L. Bufton. T. Itabe, L.L. Strow, C.L. Korb, B.M. Gentry, C.Y. Wenig, Appl. Opt. 22, 2592 (1983)

    ADS  Google Scholar 

  16. N. Sugimoto, A. Minato, Appl. Opt. 32/33, 6827 (1993)

    ADS  Google Scholar 

  17. W.B. Grant, Appl. Opt. 21, 2390 (1982)

    Article  ADS  Google Scholar 

  18. S. Ismail, E.V. Browell, Appl. Opt. 28, 3603 (1989)

    ADS  Google Scholar 

  19. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. Mc-Cann, R.R. Gamache, R.B. Wattson, K. Yoshino, K. Chance, K. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 60, 665 (1998)

    Article  ADS  Google Scholar 

  20. C.L. Tang, W.R. Bosenberg, T. Ukachi, R.J. Lane, L.K. Cheng, IEEE Proc. 80, 365 (1992)

    Google Scholar 

  21. G. Ehret, A. Fix, V. Weiß, G. Poberaj, T. Baumert, Appl. Phys. B 67, 427 (1998)

    Article  ADS  Google Scholar 

  22. J.T. Lin, Opt. Quantum Electron. 22, 283 (1990)

    Article  Google Scholar 

  23. F. Zernicke, J.E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973)

    Google Scholar 

  24. K. Fradkin-Kashi, A. Arie, P. Urenski, G. Rosenman, Opt. Lett. 25, 743 (2000)

    Article  ADS  Google Scholar 

  25. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, Opt. Eng. 39, 1016 (2000)

    Article  ADS  Google Scholar 

  26. J.E. Bjorkholm, H.G. Danielmeyer, Appl. Phys. Lett. 15, 171 (1969)

    Article  ADS  Google Scholar 

  27. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, Appl. Phys. B 75, 165 (2002)

    Article  ADS  Google Scholar 

  28. J. Henningsen, H. Simonsen, J. Mol. Spectrosc. 203, 16 (2000)

    Article  ADS  Google Scholar 

  29. R.T. White, Y. He, B.J. Orr, M. Kono, K.G.H. Baldwin, Opt. Lett. 28, 1248 (2003)

    Article  ADS  Google Scholar 

  30. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, R. Treichel, Appl. Phys. B 87, 437 (2007)

    Article  ADS  Google Scholar 

  31. T.J. Mckee, J. Lobin, W.A. Young, Appl. Opt. 21, 725 (1982)

    ADS  Google Scholar 

  32. M.J.T. Milton, P.T. Woods, Appl. Opt. 26, 2598 (1987)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amediek.

Additional information

PACS

42.65.Yj; 42.68.Wt; 92.60.hg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amediek, A., Fix, A., Wirth, M. et al. Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide. Appl. Phys. B 92, 295–302 (2008). https://doi.org/10.1007/s00340-008-3075-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3075-6

Keywords

Navigation