Skip to main content
Log in

Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports the synthesis of high upconversion luminescent Gd2O3: Er3+, Yb3+ nanophosphor through optimized combustion route using urea as a reducing agent. The paper also reports the first observation of upconversion emission bands extending upto the UV region (335, 366 and 380 nm) in Er3+–Yb3+ co-doped phosphor materials. The fuel to oxidizer ratio has been varied to obtain the maximum upconversion luminescence. Three high intensity bands are found at 408, 523–548 and 667 nm due to the 4G11/2 → 4I15/2, 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively, along with the other bands. Input excitation power dependence has been studied for different transitions, and the saturation effect and decrease in the slope of different transitions at higher input pump power has been explained. Heat treatments of the samples show change in crystallite phase/size and relative upconversion luminescence intensities of blue, green and red bands. The color of the phosphor emission has shown to be tunable with change in the crystal structure as well as on excitation laser power and Er3+–Yb3+ concentration. The property of color tunability of the phosphor material has been used to record the fingerprint in different colors. Also, the future prospect of the nanocrystalline phosphor material as a sensor for temperature, using FIR method, has been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Google Scholar 

  2. C. Feldmann, T. Jusatel, C.R. Ronda, P.J. Schmidt, Adv. Funct. Mater. 13, 511 (2003)

    Article  Google Scholar 

  3. M. Zhang, J. Wang, W. Ding, Q. Zhang, Q. Su, Appl. Phys. B 86, 647 (2007)

    Article  ADS  Google Scholar 

  4. C. Champod, C. Lennard, P. Margot, M. Stoilovic, Fingerprint and other ridge skin impression (CRC Press, Boca Raton, 2004)

    Google Scholar 

  5. P.C. Brownrigg, S.A. Pollack, V. Vali, U.S. Patent number-5099131, 1992

  6. V.K. Rai, Appl. Phys. B 88, 297 (2007)

    Article  ADS  Google Scholar 

  7. M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, Phys. Rev. B 61, 3337 (2000)

    Article  ADS  Google Scholar 

  8. N.G. Subramaniam, S.S. Pandian, T.W. Kang, Appl. Phys. B 80, 935 (2005)

    Article  ADS  Google Scholar 

  9. K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. 113, 574 (2001)

    Article  Google Scholar 

  10. G.A. Hebbink, J.W. Stouwdam, D.N. Reinhoudt, F.C.J.M. van Veggel, Adv. Mater. 14, 1147 (2002)

    Article  Google Scholar 

  11. X. Wang, Y.D. Li, Angew. Chem. 114, 4984 (2002)

    Article  Google Scholar 

  12. X. Wang, X.M. Sun, D.P. Yu, B.S. Zhou, Y.D. Li, Adv. Mater. 15, 1442 (2003)

    Article  Google Scholar 

  13. P.L.A.M. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R.S. Niedbala, H.J. Tanke, Anal. Biochem. 312, 191 (2003)

    Article  Google Scholar 

  14. O.V. Salata, J. Nanobiotec. 2, 3 (2004)

    Article  Google Scholar 

  15. S.I. Klink, G.A. Hebbink, L. Grave, F.C.J.M. van Veggel, D.N.R. Reinhoudt, L.H. Slooff, A. Polman, J.W. Hofstraat, J. Appl. Phys. 86, 1181 (1999)

    Article  ADS  Google Scholar 

  16. Y. Lie, H. Song, L. Yang, L. Yu, Z. Liu, G. Pan, X. Bai, L. Fan, J. Chem. Phys. 123, 174710 (2005)

    Article  ADS  Google Scholar 

  17. W.N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Chem. Mater. 19, 1723 (2007)

    Article  Google Scholar 

  18. K.Y. Jung, C.H. Lee, Y.C. Kang, Mater. Lett. 59, 2451 (2005)

    Article  Google Scholar 

  19. L.S. Wang, Y.H. Zhou, Z.W. Quan, J. Lin, Mater. Lett. 59, 1130 (2005)

    Article  Google Scholar 

  20. L.G. Jacobsohn, B.L. Bennett, R.E. Muenchausen, S.C. Tornga, J.D. Thompson, O. Ugurlu, D.W. Cooke, A.L. Lima Sharma, J. Appl. Phys. 103, 104303 (2008)

    Article  ADS  Google Scholar 

  21. H. Li, X. Liu, L. Huang, Ceram. Intern. 33, 1141 (2007)

    Article  Google Scholar 

  22. S.R. Jain, K.C. Adiga, P.V. Verneker, Combust. Flame 40, 71 (1981)

    Article  Google Scholar 

  23. H. Ryul, K.S. Bartwal, Res. Lett. Mater. Sci. 23, 23643 (2007)

    Google Scholar 

  24. E. Osiac, I. Sokolska, S. Kuck, J. Lumin. 95, 289 (2001)

    Article  Google Scholar 

  25. K.M. Lin, Y.Y. Li, Nanotechnologies 17, 4048 (2006)

    Article  ADS  Google Scholar 

  26. S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. 94, 4743 (2003)

    Article  ADS  Google Scholar 

  27. M.A.R.C. Alencar, G.S. Maciel, C.B. de Araujo, Appl. Phys. Lett. 84, 4753 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.K., Kumar, K. & Rai, S.B. Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route. Appl. Phys. B 94, 165–173 (2009). https://doi.org/10.1007/s00340-008-3261-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3261-6

PACS

Navigation