Skip to main content
Log in

Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe in detail the manufacturing procedures for selectively closing holes in photonics crystal fibers and their infiltration with different liquids. We apply our method to create a large mode area liquid-filled photonic crystal fiber which consists of 19 liquid strands. By changing the mixing ratio between toluene and ethanol and by varying the temperature, we show continuous tuning from isolated to coupled behavior of the spatial mode profile. This demonstrates the versatility of selectively closed liquid-filled photonic crystal fibers for future photonic devices. Filling with nonlinear liquids, gases, metals, liquid crystals, low melting compound glasses, or quantum dots is possible, and spatial as well as temporal engineering of linear and nonlinear optical properties will become feasible, which should allow the observation of spatiotemporal solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.St.J. Russell, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  2. J.C. Knight, Nature 424, 847 (2003)

    Article  ADS  Google Scholar 

  3. T. Monro, D. Richardson, P. Bennett, Electron. Lett. 35, 1188 (1999)

    Article  Google Scholar 

  4. S. Arismar Cerqueira, Rep. Prog. Phys. 73, 024401 (2010)

    Article  ADS  Google Scholar 

  5. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  6. E. Mägi, P. Steinvurzel, B.J. Eggleton, Opt. Express 12, 776 (2004)

    Article  ADS  Google Scholar 

  7. T. Birks, Y. Li, J. Lightwave Technol. 10, 432 (1992)

    Article  ADS  Google Scholar 

  8. C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, B.J. Eggleton, Appl. Phys. Lett. 79, 3191 (2001)

    Article  ADS  Google Scholar 

  9. A. Candiani, M. Konstantaki, W. Margulis, S. Pissadakis, Opt. Express 18, 24654 (2010)

    Article  ADS  Google Scholar 

  10. F. Benabid, J.C. Knight, G. Antonopoulos, P.St.J. Russell, Science 298, 399 (2002)

    Article  ADS  Google Scholar 

  11. T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, Opt. Express 11, 2589 (2003)

    Article  ADS  Google Scholar 

  12. A. Lorenz, R. Schuhmann, H.-S. Kitzerow, Opt. Express 18, 3519 (2010)

    Article  ADS  Google Scholar 

  13. P.J.A. Sazio, A. Amezcua-Correa, C.E. Finlayson, J.R. Hayes, T.J. Scheidemantel, N.F. Baril, B.R. Jackson, D.-J. Won, F. Zhang, E.R. Margine, V. Gopalan, V.H. Crespi, J.V. Badding, Science 311, 1583 (2006)

    Article  ADS  Google Scholar 

  14. N. Granzow, P. Uebel, M.A. Schmidt, A.S. Tverjanovich, L. Wondraczek, P.St.J. Russell, Opt. Lett. 36, 2432 (2011)

    Article  ADS  Google Scholar 

  15. H.W. Lee, M.A. Schmidt, H.K. Tyagi, L.P. Sempere, P.St.J. Russell, Appl. Phys. Lett. 93, 111102 (2008)

    Article  ADS  Google Scholar 

  16. M.A. Schmidt, L. Prill Sempere, H. Tyagi, C. Poulton, P.St.J. Russell, Phys. Rev. B 77, 13 (2008)

    Google Scholar 

  17. C.R. Rosberg, F.H. Bennet, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, Y.S. Kivshar, Opt. Express 15, 12145 (2007)

    Article  ADS  Google Scholar 

  18. M.K. Garbos, T.G. Euser, O.A. Schmidt, S. Unterkofler, P.St.J. Russell, Opt. Lett. 36, 2020 (2011)

    Article  ADS  Google Scholar 

  19. W. Qian, C.-L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, H. Wei, Opt. Lett. 36, 1548 (2011)

    Article  ADS  Google Scholar 

  20. C. Kerbage, B.J. Eggleton, Appl. Phys. Lett. 82, 1338 (2003)

    Article  ADS  Google Scholar 

  21. A. Fuerbach, P. Steinvurzel, J. Bolger, A. Nulsen, B.J. Eggleton, Opt. Lett. 30, 830 (2005)

    Article  ADS  Google Scholar 

  22. S. Lebrun, P. Delaye, R. Frey, G. Roosen, Opt. Lett. 32, 337 (2007)

    Article  ADS  Google Scholar 

  23. T. Han, Y. Liu, Z. Wang, B. Zou, B. Tai, B. Liu, Opt. Lett. 35, 2061 (2010)

    Article  ADS  Google Scholar 

  24. H.W. Lee, M.A. Schmidt, P. Uebel, H. Tyagi, N.Y. Joly, M. Scharrer, P.St.J. Russell, Opt. Express 19, 8200 (2011)

    Article  ADS  Google Scholar 

  25. R. Zhang, J. Teipel, H. Giessen, Opt. Express 14, 6800 (2006)

    Article  ADS  Google Scholar 

  26. M. Vieweg, T. Gissibl, S. Pricking, B.T. Kuhlmey, D.C. Wu, B.J. Eggleton, H. Giessen, Opt. Express 18, 25232 (2010)

    Article  ADS  Google Scholar 

  27. A. Bozolan, C.J. de Matos, C.M. Cordeiro, E.M. Dos Santos, J. Travers, Opt. Express 16, 9671 (2008)

    Article  ADS  Google Scholar 

  28. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, J. Herrmann, Opt. Express 18, 6230 (2010)

    Article  ADS  Google Scholar 

  29. S. Pricking, H. Giessen, Opt. Express 19, 2895 (2011)

    Article  ADS  Google Scholar 

  30. D.C. Wu, B.T. Kuhlmey, B.J. Eggleton, Opt. Lett. 34, 322 (2009)

    Article  Google Scholar 

  31. P.D. Rasmussen, A.A. Sukhorukov, D.N. Neshev, W. Krolikowski, O. Bang, J. Laegsgaard, Y.S. Kivshar, Opt. Express 16, 5878 (2008)

    Article  ADS  Google Scholar 

  32. Y. Silberberg, Opt. Lett. 15, 1282 (1990)

    Article  ADS  Google Scholar 

  33. S. Minardi, F. Eilenberger, Y. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, T. Pertsch, Phys. Rev. Lett. 105, 1 (2010)

    Article  Google Scholar 

  34. J.-H. Liou, S.-S. Huang, C.-P. Yu, Opt. Commun. 283, 971 (2010)

    Article  ADS  Google Scholar 

  35. W. Qian, C.-L. Zhao, J. Kang, X. Dong, Z. Zhang, S. Jin, Opt. Commun. 264, 4800 (2011)

    Article  ADS  Google Scholar 

  36. Y. Huang, Y. Xu, A. Yariv, Appl. Phys. Lett. 85, 5182 (2004)

    Article  ADS  Google Scholar 

  37. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, C. Zhao, Opt. Express 13, 9014 (2005)

    Article  ADS  Google Scholar 

  38. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T. Hansen, J. Opt. A, Pure Appl. Opt. 7, L13 (2005)

    Article  ADS  Google Scholar 

  39. A. Witkowska, K. Lai, S. Leon-Saval, W. Wadsworth, T. Birks, Opt. Lett. 31, 2672 (2006)

    Article  ADS  Google Scholar 

  40. B.T. Kuhlmey, B.J. Eggleton, D.C. Wu, J. Lightwave Technol. 27, 1617 (2009)

    Article  ADS  Google Scholar 

  41. J. Ju, H.F. Xuan, W. Jin, S. Liu, H.L. Ho, Opt. Lett. 35, 3886 (2010)

    Article  ADS  Google Scholar 

  42. Y. Wang, C. Liao, D. Wang, Opt. Express 18, 18056 (2010)

    Article  Google Scholar 

  43. J.R. Sparks, J.L. Esbenshade, R. He, N. Healy, T.D. Day, D.W. Keefer, P.J.A. Sazio, A.C. Peacock, J.V. Badding, J. Lightwave Technol. 29, 1 (2011)

    Article  Google Scholar 

  44. H.W. Lee, M.A. Schmidt, R.F. Russell, N.Y. Joly, H.K. Tyagi, P. Uebel, P.St.J. Russell, Opt. Express 19, 12180 (2011)

    Article  ADS  Google Scholar 

  45. M.M. Vogel, M. Abdou-Ahmed, A. Voss, T. Graf, Opt. Lett. 34, 2876 (2009)

    Article  ADS  Google Scholar 

  46. B. Cumpston, S. Ananthavel, S. Barlow, D. Dyer, Nature 398, 51 (1999)

    Article  ADS  Google Scholar 

  47. M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Nat. Mater. 3, 444 (2004)

    Article  ADS  Google Scholar 

  48. http://www.microchem.com/pdf/SU8_2-25.pdf

  49. M. Nielsen, J. Folkenberg, N. Mortensen, Opt. Express 12, 430 (2004)

    Article  ADS  Google Scholar 

  50. http://nktphotonics.com/files/files/LMA-8-100409.pdf

  51. I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)

    Article  ADS  Google Scholar 

  52. J. Rheims, J. Köser, T. Wriedt, Meas. Sci. Technol. 8, 601 (1997)

    Article  ADS  Google Scholar 

  53. A. Samoc, J. Appl. Phys. 94, 6167 (2003)

    Article  ADS  Google Scholar 

  54. M. Weber, Handbook of Optical Materials (CRC Press, New York, 2003)

    Google Scholar 

  55. W. Heller, J. Phys. Chem. 69, 1123 (1965)

    Article  Google Scholar 

  56. J. Teipel, K. Franke, D. Türke, F. Warken, D. Meiser, M. Leuschner, H. Giessen, Appl. Phys. B, Lasers Opt. 77, 245 (2003)

    Article  ADS  Google Scholar 

  57. N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, K.P. Hansen, Opt. Lett. 28, 1879 (2003)

    Article  ADS  Google Scholar 

  58. M. Midrio, M. Singh, C. Someda, J. Lightwave Technol. 18, 1031 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Deutsche Forschungsgemeinschaft, from BMBF, and from Baden-Württemberg Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gissibl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gissibl, T., Vieweg, M., Vogel, M.M. et al. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes. Appl. Phys. B 106, 521–527 (2012). https://doi.org/10.1007/s00340-011-4859-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4859-7

Keywords

Navigation