Skip to main content
Log in

Rogue wave formation by accelerated solitons at an optical event horizon

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Rogue waves, by definition, are rare events of extreme amplitude. At the same time, they are surprisingly ubiquitous, in the sense that they can exist in a wide range of physical contexts and possess probability distributions that exhibit heavier tails than the normal Gaussian distribution. While many mechanisms have been demonstrated to explain the appearance of rogue waves in various specific systems, there is no known generic mechanism or general set of criteria shown to rule their appearance. Presupposing only the existence of a nonlinear Schrödinger-type equation together with a concave dispersion profile around a zero-dispersion wavelength, we demonstrate that solitons may experience acceleration and strong reshaping due to the interaction with continuum radiation, giving rise to extreme-value phenomena. The mechanism appears to be widely independent from interactions specific to the optical context, e.g., the Raman effect or other scattering processes that have no equivalent in other wave-supporting physical systems. In our system, a strong increase in the peak power may appear via reshaping while the pulse energy is nearly conserved. The conservative nature of the proposed reshaping-induced appearance of rogue waves makes this mechanism particularly robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Dysthe, H.E. Krogstad, P. Müller, Annu. Rev. Fluid Mech. 40, 287 (2008)

    Article  ADS  Google Scholar 

  2. A.N. Ganshin, et al., Phys. Rev. Lett. 101, 065303 (2008)

    Article  ADS  Google Scholar 

  3. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Phys. Rev. A 80, 033610 (2009)

    Article  ADS  Google Scholar 

  4. M.S. Ruderman, Eur. Phys. J. Special Top. 185, 57 (2010)

    Article  ADS  Google Scholar 

  5. L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)

    Article  ADS  Google Scholar 

  6. D.R. Solli, et al., Nat. Biotechnol. 450, 1054 (2007)

    Article  ADS  Google Scholar 

  7. J. Kasparian, et al., Opt. Express 17, 12070 (2009)

    Article  ADS  Google Scholar 

  8. D. Majus, et al., Phys. Rev. A 83, 025802 (2011)

    Article  ADS  Google Scholar 

  9. C. Kharif, E. Pelinovsky, Eur. J. Mech. 22, 603 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. P.A.E.M. Jannsen, J. Phys. Oceanogr. 33, 863 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Onorato, et al., Phys. Rev. Lett. 86, 5831 (2001)

    Article  ADS  Google Scholar 

  12. A. Mussot, et al., Opt. Exp. 17, 1502 (2009)

    Article  Google Scholar 

  13. M. Taki, et al., Phys. Lett. A 374, 691 (2010)

    Article  MATH  ADS  Google Scholar 

  14. D.R. Solli, C. Ropers, B. Jalali, Phys. Rev. Lett. 101, 233902 (2008)

    Article  ADS  Google Scholar 

  15. J.M. Dudley, G. Genty, B.J. Eggleton, Opt. Exp. 16, 3644 (2008)

    Article  ADS  Google Scholar 

  16. M. Erkintalo, G. Genty, J.M. Dudley, Opt. Lett. 35, 658 (2010)

    Article  ADS  Google Scholar 

  17. G. Genty, J.M. Dudley, B.J. Eggleton, Appl. Phys. B 94, 187 (2009)

    Article  ADS  Google Scholar 

  18. N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Rev. A 80, 043818 (2009)

    Article  ADS  Google Scholar 

  19. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    Article  MATH  ADS  Google Scholar 

  20. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009)

    Article  ADS  Google Scholar 

  21. B. Kibler, et al., Nat. Phys. 6, 790 (2010)

    Article  Google Scholar 

  22. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, G. Steinmeyer, Sci. Rep. 2, 850 (2012)

    Article  ADS  Google Scholar 

  23. R. Smith, Math. Proc. Camb. Phil. Soc. 78, 517 (1975)

    Article  MATH  Google Scholar 

  24. C.M. De Sterke, Opt. Lett. 17, 914 (1992)

    Article  ADS  Google Scholar 

  25. N. Rosanov, JETP Lett. 88, 501 (2008)

    Article  ADS  Google Scholar 

  26. V.E. Lobanov, A.P. Sukhorukov, Phys. Rev. A 82, 033809 (2010)

    Article  ADS  Google Scholar 

  27. A.V. Gorbach, D.V. Skryabin, Opt. Express. 15, 14560 (2008)

    Article  ADS  Google Scholar 

  28. D.V. Skryabin, A.V. Gorbach, Rev. Mod. Phys. 82, 1287 (2010)

    Article  ADS  Google Scholar 

  29. M. Novello, M. Visser, G. Volovik (eds.), Artificial Black Holes. (World Scientific, New Jersey, London, Singapore, Hong Kong, 2002)

    Google Scholar 

  30. F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Phys. Rev. Lett. 105, 203901 (2010)

    Article  ADS  Google Scholar 

  31. T.G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, U. Leonhardt, Sci. Agric. 319, 1367 (2008)

    Article  ADS  Google Scholar 

  32. D. Faccio, Cont. Phys. 1, 1 (2012)

    Google Scholar 

  33. G. Agrawal, Nonlinear Fiber Optics. (Academic Press, San Diego, 2001)

    Google Scholar 

  34. L.J. Garay, J.R. Anglin, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 85, 4643 (2000)

    Article  ADS  Google Scholar 

  35. T.A. Jacobson, G.E. Volovik, Phys. Rev. D 58, 064021 (1998)

    Article  ADS  Google Scholar 

  36. F. Belgiorno, S.L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E. Rubino, V.G. Sala, D. Faccio, Phys. Rev. Lett. 105, 203901 (2010)

    Article  ADS  Google Scholar 

  37. G. Rousseaux, C. Mathis, P. Maïssa, T.G. Philbin, U. Leonhardt, New J. Phys. 10, 053015 (2008)

    Article  ADS  Google Scholar 

  38. R. Driben, F. Mitschke, N. Zhavoronkov, Opt. Exp. 18, 25993 (2010)

    Article  ADS  Google Scholar 

  39. V.E. Zakharov, E. Pushkarev, V.F. Shvets, V.V. Yan’kov, JETP Lett. 48, 83–87 (1988)

    Google Scholar 

  40. G. Genty, et al., Phys. Lett. A 374, 989 (2010)

    Article  MATH  ADS  Google Scholar 

  41. V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave turbulence. (Springer, Berlin, 1992)

    Book  Google Scholar 

  42. S. Amiranashvili, A. Demircan, Phys. Rev. A 82, 013812 (2010)

    Article  ADS  Google Scholar 

  43. S. Amiranashvili, A. Demircan, Adv. Opt. Tech. 2011, 989515 (2011)

  44. J. Herrmann, et al., Phys. Rev. Lett. 88, 173901 (2002)

    Article  ADS  Google Scholar 

  45. S. Amiranashvili, U. Bandelow, A. Mielke, Opt. Commun. 283, 480 (2009)

    Article  ADS  Google Scholar 

  46. A. Demircan, U. Bandelow, Opt. Comm. 244, 181 (2005)

    Article  ADS  Google Scholar 

  47. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  48. M. Erkintalo, G. Genty, J.M. Dudley, Eur. Phys. J. Special Top. 185, 135 (2010)

    Article  ADS  Google Scholar 

  49. N. Akhmediev, E. Pelinovsky, Eur. Phys. J. Special Top. 185, 1 (2010)

    Article  ADS  Google Scholar 

  50. A. Demircan, U. Bandelow, Appl. Phys. B 86, 31 (2007)

    Article  ADS  Google Scholar 

  51. A. Demircan, S. Amiranashvili, G. Steinmeyer, Phys. Rev. Lett. 106, 163901 (2011)

    Article  ADS  Google Scholar 

  52. S.-J. Im, A. Husakou, J. Herrmann, Opt. Exp. 18, 5367 (2010)

    Article  ADS  Google Scholar 

  53. K.E. Lynch-Klarup, E.D. Mondloch, M.G. Raymer, D. Arrestier, F. Gerome, F. Benabid, Opt. Exp. 21, 13726 (2013)

    Article  Google Scholar 

  54. A. Demircan, S. Amiranashvili, C. Brée, G. Steinmeyer, Phys. Rev. Lett. 110, 233901 (2013)

    Article  ADS  Google Scholar 

  55. R. Driben, I. Babushkin, Opt. Lett. 37, 5157 (2012)

    Article  ADS  Google Scholar 

  56. A.V. Yulin, R. Driben, B.A. Malomed, D.V. Skryabin, Opt. Exp. 21, 14481 (2013)

    Article  ADS  Google Scholar 

  57. F.M. Mitschke, Mollenauer, Opt. Lett. 11, 659 (1986)

    Google Scholar 

  58. B. Kibler, K. Hammani, C. Michel, C. Finot, A. Picozzi, Phys. Lett. A 375, 3149 (2011)

    Article  MATH  ADS  Google Scholar 

  59. H. Lamb, Hydrodynamics (6th ed). (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

Download references

Acknowledgments

The following support is gratefully acknowledged: A. D. partially by DFG, Sh. A. by the DFG Research Center MATHEON (project D 14), F. M. by DFG, G. S. by the Academy of Finland (project Grant 128844), and C.M. partially by DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Demircan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demircan, A., Amiranashvili, S., Brée, C. et al. Rogue wave formation by accelerated solitons at an optical event horizon. Appl. Phys. B 115, 343–354 (2014). https://doi.org/10.1007/s00340-013-5609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5609-9

Keywords

Navigation