Skip to main content
Log in

Ground state of the asymmetric Rabi model in the ultrastrong coupling regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the ground states of the single- and two-qubit asymmetric Rabi models, in which the qubit–oscillator coupling strengths for the counterrotating-wave and corotating-wave interactions are unequal. We take the transformation method to obtain the approximately analytical ground states for both models and numerically verify its validity for a wide range of parameters under the near-resonance condition. We find that the ground-state energy in either the single- or two-qubit asymmetric Rabi model has an approximately quadratic dependence on the coupling strengths stemming from different contributions of the counterrotating-wave and corotating-wave interactions. For both models, we show that the ground-state energy is mainly contributed by the counterrotating-wave interaction. Interestingly, for the two-qubit asymmetric Rabi model, we find that, with the increase in the coupling strength in the counterrotating-wave or corotating-wave interaction, the two-qubit entanglement first reaches its maximum and then drops to zero. Furthermore, the maximum of the two-qubit entanglement in the two-qubit asymmetric Rabi model can be much larger than that in the two-qubit symmetric Rabi model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.I. Rabi, Phys. Rev. 49, 324 (1936)

    Article  ADS  MATH  Google Scholar 

  2. I.I. Rabi, Phys. Rev. 51, 652 (1937)

    Article  ADS  Google Scholar 

  3. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  4. S.B. Zheng, G.C. Guo, Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  5. B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. S. Osnaghi, P. Bertet, A. Auffeves et al., Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  7. S.M. Spillane, T.J. Kippenberg, K.J. Vahala et al., Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  8. Y. Wu, X. Yang, Phys. Rev. Lett. 78, 3086 (1997)

    Article  ADS  Google Scholar 

  9. X. Yang, Y. Wu, Y.J. Li, Phys. Rev. A 55, 4545 (1997)

    Article  ADS  Google Scholar 

  10. J.Q. You, F. Nori, Phys. Today 58, 42–47 (2005)

    Article  Google Scholar 

  11. I. Buluta, F. Nori, Science 326, 108–111 (2009)

    Article  ADS  Google Scholar 

  12. S.N. Shevchenko, S. Ashhab, F. Nori, Phys. Rep. 492, 1–30 (2010)

    Article  ADS  Google Scholar 

  13. I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  14. J.Q. You, F. Nori, Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  15. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Rev. Mod. Phys. 84, 1–24 (2012)

    Article  ADS  Google Scholar 

  16. Z.L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  17. I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  18. A.A. Abdumalikov Jr, O. Astafiev, Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Phys. Rev. B 78, 180502(R) (2008)

    Article  ADS  Google Scholar 

  19. A.A. Anappara, S.D. Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba, F. Beltram, Phys. Rev. B 79, 201303(R) (2009)

    Article  ADS  Google Scholar 

  20. G. Günter, A.A. Anappara, J. Hees et al., Nature 458, 178 (2009)

    Article  ADS  Google Scholar 

  21. T. Niemczyk, F. Deppe, H. Huebl et al., Nature 6, 772 (2010)

    Google Scholar 

  22. P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  23. Y. Todorov, A.M. Andrews, R. Colombelli et al., Phys. Rev. Lett. 105, 196402 (2010)

    Article  ADS  Google Scholar 

  24. T. Schwartz, J.A. Hutchison, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 106, 196405 (2011)

    Article  ADS  Google Scholar 

  25. G. Scalari, C. Maissen, D. Turčinková et al., Science 335, 1323 (2012)

    Article  ADS  Google Scholar 

  26. A. Crespi, S. Longhi, R. Osellame, Phys. Rev. Lett. 108, 163601 (2012)

    Article  ADS  Google Scholar 

  27. S. Hayashi, Y. Ishigaki, M. Fujii, Phys. Rev. B 86, 045408 (2012)

    Article  ADS  Google Scholar 

  28. J. Li, M.P. Silveri, K.S. Kumar, J.M. Pirkkalainen, A. Vepsäläinen, W.C. Chien, J. Tuorila, M.A. Sillanpää, P.J. Hakonen, E.V. Thuneberg, G.S. Paraoanu, Nature Communications 4, 1420 (2013)

    Article  ADS  Google Scholar 

  29. X. Cao, J.Q. You, H. Zheng, F. Nori, New J. Phys. 13, 073002 (2011)

    Article  ADS  Google Scholar 

  30. A. Ridolfo, M. Leib, S. Savasta, M.J. Hartmann, Phys. Rev. Lett. 109, 193602 (2012)

    Article  ADS  Google Scholar 

  31. S. Ashhab, F. Nori, Phys. Rev. A 81, 042311 (2010)

    Article  ADS  Google Scholar 

  32. S. Ashhab, Phys. Rev. A 87, 013826 (2013)

    Article  ADS  Google Scholar 

  33. H.P. Zheng, F.C. Lin, Y.Z. Wang, Y. Segawa, Phys. Rev. A 59, 4589 (1999)

    Article  ADS  Google Scholar 

  34. S.B. Zheng, X.W. Zhu, M. Feng, Phys. Rev. A 62, 033807 (2000)

    Article  ADS  Google Scholar 

  35. E.K. Irish, J. Gea-Banacloche, I. Martin, K.C. Schwab, Phys. Rev. B 72, 195410 (2005)

    Article  ADS  Google Scholar 

  36. C. Ciuti, I. Carusotto, Phys. Rev. A 74, 033811 (2006)

    Article  ADS  Google Scholar 

  37. D. Wang, T. Hansson, Å. Larson, H.O. Karlsson, J. Larson, Phys. Rev. A 77, 053808 (2008)

    Article  ADS  Google Scholar 

  38. X.F. Cao, J.Q. You, H. Zheng, A.G. Kofman, F. Nori, Phys. Rev. A 82, 022119 (2010)

    Article  ADS  Google Scholar 

  39. P. Nataf, C. Ciuti, Phys. Rev. Lett. 107, 190402 (2011)

    Article  ADS  Google Scholar 

  40. V.V. Albert, Phys. Rev. Lett. 108, 180401 (2012)

    Article  ADS  Google Scholar 

  41. X.F. Cao, Q. Ai, C.P. Sun, F. Nori, Phys. Lett. A 376, 349 (2012)

    Article  ADS  MATH  Google Scholar 

  42. I.D. Feranchuk, L.I. Komarov, A.P. Ulyanenkov, J. Phys. A Math. Gen. 29, 4035 (1996)

    Article  ADS  MATH  Google Scholar 

  43. Q.H. Chen, T. Liu, Y.Y. Zhang, K.L. Wang, Eur. Phys. Lett. 96, 14003 (2011)

    Article  ADS  Google Scholar 

  44. H. Chen, Y.M. Zhang, X. Wu, Phys. Rev. B 40, 11326 (1989)

    Article  ADS  Google Scholar 

  45. J. Stolze, L. Müller, Phys. Rev. B 42, 6704 (1990)

    Article  ADS  Google Scholar 

  46. E.K. Irish, Phys. Rev. Lett. 99, 173601 (2007)

    Article  ADS  Google Scholar 

  47. T. Liu, K.L. Wang, M. Feng, Eur. Phys. Lett. 86, 54003 (2009)

    Article  ADS  Google Scholar 

  48. D. Zueco, G.M. Reuther, S. Kohler, P. Hänggi, Phys. Rev. A 80, 033846 (2009)

    Article  ADS  Google Scholar 

  49. J. Casanova, G. Romero, I. Lizuain, J.J. García-Ripoll, E. Solano, Phys. Rev. Lett. 105, 263603 (2010)

    Article  ADS  Google Scholar 

  50. M.J. Hwang, M.S. Choi, Phys. Rev. A 82, 025802 (2010)

    Article  ADS  Google Scholar 

  51. J. Song, Y. Xia, X.D. Sun, Y. Zhang, B. Liu, H.S. Song, Eur. Phys. J. D 66, 1 (2012)

    Article  ADS  Google Scholar 

  52. L.X. Yu, S.Q. Zhu, Q.F. Liang, G. Chen, S.T. Jia, Phys. Rev. A 86, 015803 (2012)

    Article  ADS  Google Scholar 

  53. S. Agarwal, S.M.H. Rafsanjani, J.H. Eberly, Phys. Rev. A 85, 043815 (2012)

    Article  ADS  Google Scholar 

  54. Q.H. Chen, C. Wang, S. He, T. Liu, K.L. Wang, Phys. Rev. A 86, 023822 (2012)

    Article  ADS  Google Scholar 

  55. H. Zheng, Eur. Phys. J. B 38, 559 (2004)

    Article  ADS  Google Scholar 

  56. Z.G. Lü, H. Zheng, Phys. Rev. B 75, 054302 (2007)

    Article  ADS  Google Scholar 

  57. C.J. Gan, H. Zheng, Eur. Phys. J. D 59, 473 (2010)

    Article  ADS  Google Scholar 

  58. K.M.C. Lee, C.K. Law, Phys. Rev. A 88, 015802 (2013)

    Article  ADS  Google Scholar 

  59. L.T. Shen, Z.B. Yang, R.X. Chen, Phys. Rev. A 88, 045803 (2013)

    Article  ADS  Google Scholar 

  60. F. Altintas, R. Eryigit, Phys. Rev. A 87, 022124 (2013)

    Article  ADS  Google Scholar 

  61. L.H. Du, X.F. Zhou, Z.W. Zhou, X. Zhou, G.C. Guo, Phys. Rev. A 86, 014303 (2012)

    Article  ADS  Google Scholar 

  62. H.H. Zhong, Q.T. Xie, C.H. Lee, J. Phys. A Math. Theor. 46, 415302 (2013)

    Article  MathSciNet  Google Scholar 

  63. G.H. Tian, S.Q. Zhong, arXiv:1309.7715v1, (2013)

  64. D. Braak, Phys. Rev. Lett. 107, 100401 (2011)

    Article  ADS  Google Scholar 

  65. F. Dimer, B. Estienne, A.S. Parkins, H.J. Carmichael, Phys. Rev. A 75, 013804 (2007)

    Article  ADS  Google Scholar 

  66. A.L. Grimsmo, S. Parkins, Phys. Rev. A 87, 033814 (2013)

    Article  ADS  Google Scholar 

  67. F.T. Hioe, Phys. Rev. A 8, 1440 (1973)

    Article  ADS  Google Scholar 

  68. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major State Basic Research Development Program of China under Grant No. 2012CB921601, the National Natural Science Foundation of China under Grant No. 11374054, No. 11305037, No. 11347114, and No. 11247283, the Natural Science Foundation of Fujian Province under Grant No. 2013J01012, and the funds from Fuzhou University under Grant No. 022513, Grant No. 022408, and Grant No. 600891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Tuo Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, LT., Yang, ZB., Lu, M. et al. Ground state of the asymmetric Rabi model in the ultrastrong coupling regime. Appl. Phys. B 117, 195–202 (2014). https://doi.org/10.1007/s00340-014-5821-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5821-2

Keywords

Navigation