Skip to main content
Log in

Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response

  • DPG Tagung 2013
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We use liquid-filled capillary fibers with different core diameters to precisely characterize the nonlinear refractive index of the highly nonlinear liquids carbon disulfide, nitrobenzene, and toluene. We present measurements with two different femtosecond pump sources at wavelengths of 1032 and 1560 nm. The large nonlinearity of the liquids results from the retarded nonlinear optical response of the liquid molecules which includes a strong non-instantaneous contribution due to molecular reorientation. The nonlinear refractive index of the liquids is determined by fitting numerical simulations based on solving the generalized nonlinear Schrödinger equation including retarded response to the measured broadened output spectra. Our work is important for the novel field of near- and mid-IR supercontinuum generation in liquid-core optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. P.P. Ho, R.R. Alfano, Phys. Rev. A 20, 2170 (1979)

    Article  ADS  Google Scholar 

  2. D. Lin-Vien, N.W. Colthup, W.G. Fateley, J.G. Grasselli, The handbook of infrared and Raman frequencies of organic molecules (Wiley, Hoboken, 1991)

    Google Scholar 

  3. O.P. Kulkarni, V. Alexander, M. Kumar, M.J. Freeman, M.N. Islam, F.L. Terry Jr, M. Neelakandan, A. Chan, J. Opt. Soc. Am. B 28, 2486 (2011)

    Article  ADS  Google Scholar 

  4. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, B. Luther-Davies, Opt. Mat. Express 3, 1075 (2013)

    Article  Google Scholar 

  5. M. Vieweg, T. Gissibl, S. Pricking, B.T. Kuhlmey, D.C. Wu, B.J. Eggleton, H. Giessen, Opt. Express 18, 25232 (2010)

    Article  ADS  Google Scholar 

  6. R. Zhang, J. Teipel, H. Giessen, Opt. Express 14, 6800 (2006)

    Article  ADS  Google Scholar 

  7. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, J. Herrmann, Opt. Express 18, 6230 (2010)

    Article  ADS  Google Scholar 

  8. D. Churin, T.N. Nguyen, K. Kieu, N. Peyghambarian, Opt. Mat. Express 3, 1358 (2013)

    Article  Google Scholar 

  9. K. Kieu, L. Schneebeli, R.A. Norwood, N. Peyghambarian, Opt. Express 20, 8148 (2012)

    Article  ADS  Google Scholar 

  10. L. Xiao, N.V. Wheeler, N. Healy, A.C. Peacock, Opt. Express 21, 28751 (2013)

    Article  ADS  Google Scholar 

  11. M. Vieweg, S. Pricking, T. Gissibl, Y.V. Kartashov, L. Torner, H. Giessen, Opt. Lett. 37, 1058 (2012)

    Article  ADS  Google Scholar 

  12. C.J. Pouchert, The aldrich library of infrared spectra (Aldrich Chemical Co., Milwaukee, 1981)

    Google Scholar 

  13. M.C.P. Huy, A. Baron, S. Lebrun, R. Frey, P. Delaye, J. Opt. Soc. Am. B 27, 1886 (2010)

    Article  Google Scholar 

  14. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, Chem. Phys. Lett. 369, 318 (2003)

    Article  ADS  Google Scholar 

  15. M.J. Weber, Handbook of optical materials (CRC Press, Boca Roton, 2003)

    Google Scholar 

  16. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, U. Keller, Opt. Express 20, 4248 (2012)

    Article  ADS  Google Scholar 

  17. D. McMorrow, W.T. Lotshaw, G.A. Kenney-Wallace, J. Quantum Electron. 24, 443 (1988)

    Article  ADS  Google Scholar 

  18. R.W. Boyd, Nonlinear Optics, (Academic Press, 2008), Chap. 4.4

  19. R.V.J. Raja, A. Husakou, J. Hermann, K. Porsezian, J. Opt. Soc. Am. B 27, 1763 (2010)

    Article  ADS  Google Scholar 

  20. I.A. Heisler, R.R.B. Correia, T. Buckup, S.L.S. Cunha, J. Chem. Phys. 123, 054509 (2005)

    Article  ADS  Google Scholar 

  21. R.H. Stolen, J.P. Gordon, W.J. Tomlinson, H.A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989)

    Article  ADS  Google Scholar 

  22. P. Wiewior, C. Radzewicz, Optica Applicata 30, 103 (2000)

    Google Scholar 

  23. Y.J. Chang, E.W. Castner, J. Phys. Chem. 100, 3330 (1996)

    Article  Google Scholar 

  24. W.T. Lotshaw, D. McMorrow, C. Kalpouzos, G.A. Kenney-Wallace, Chem. Phys. Lett. 136, 323 (1987)

    Article  ADS  Google Scholar 

  25. G.P. Agrawal, Nonlinear fiber optics (Academic Press, Newyork, 2007)

    Google Scholar 

  26. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Article  ADS  Google Scholar 

  27. S. Kedenburg, M. Vieweg, T. Gissibl, H. Giessen, Opt. Mat. Express 2, 1588 (2012)

    Article  Google Scholar 

  28. I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)

    Article  ADS  Google Scholar 

  29. S. Pricking, H. Giessen, Opt. Express 19, 2895 (2011)

    Article  ADS  Google Scholar 

  30. A. Steinmann, B. Metzger, R. Hegenbarth, H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5

  31. T. Steinle, A. Steinmann, R. Hegenbarth, H. Giessen, in preparation

  32. Polymicro Technologies, http://www.polymicro.com/ mx\_upload/superfamily/polymicro/pdfs/

  33. Fimmwave, http://www.photond.com/files/brochures /fimmwave\_brochure

  34. R.H. Stolen, C. Lin, Phys. Rev. A 17, 1448 (1978)

    Article  ADS  Google Scholar 

  35. R.H. Stolen, W.A. Reed, K.S. Kim, G.T. Harvey, J. Lightwave Technol. 16, 1006 (1998)

    Article  ADS  Google Scholar 

  36. P.N. Kean, K. Smith, W. Sibbett, IEE Proceedings 134, 163 (1987)

  37. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  38. S. Couris, E. Koudoumas, F. Dong, S. Leach, J. Phys. B 29, 5033 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M. Abdou Ahmed from the IFSW for valuable advice and calculating the mode field areas. This work has been supported financially by DFG, BMBF, GIF, ERC, BW-Stiftung, and Alexander von Humboldt Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kedenburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedenburg, S., Steinmann, A., Hegenbarth, R. et al. Nonlinear refractive indices of nonlinear liquids: wavelength dependence and influence of retarded response. Appl. Phys. B 117, 803–816 (2014). https://doi.org/10.1007/s00340-014-5833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5833-y

Keywords

Navigation