Skip to main content
Log in

Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.C. Oerke, H.W. Dehne, F. Schönbeck, A. Weber, Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops (Elsevier Science, Amsterdam, 1994)

    Google Scholar 

  2. G.P. Georghiou, The evolution of resistance to pesticides. Ann. Rev. Ecol. Syst. 3, 133–168 (1972)

    Article  Google Scholar 

  3. F.G. Palis, R.J. Flor, H. Warburton et al., Our farmers at risk: behavior and belief system in pesticide safety. J. Public Health 28, 43 (2006)

    Article  Google Scholar 

  4. H. van Emden, Handbook of Agricultural Entomology (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  5. R. Pradel, Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52, 703 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. H.Q. Feng, Radar entomology: 40 years of research—review and future aspect. Henan Agric. Sci. 9, 121 (2009). (in Chinese)

    Google Scholar 

  7. V.A. Drake, D.R. Reynolds, Radar Entomology: Observing Insect Flight and Migration (CABI, Wallingford, 2012)

    Book  Google Scholar 

  8. V.A. Drake, H.K. Wang, I.T. Harman, Insect monitoring radar: remote and network operation. Comput. Electron. Agric. 35, 77–94 (2002)

    Article  Google Scholar 

  9. J.W. Chapman, D.R. Reynolds, A.D. Smith, Vertical-looking radar: a new tool for monitoring high-altitude insect migration. Bioscience 53, 503–511 (2003)

    Article  Google Scholar 

  10. D.E. Hendricks, Acoustic insect monitoring low-frequency Sodar device that counts flying insects attracted to sex pheromone dispensers. Environ. Entomol. 10.1093/ee/9.4.452 (1980)

  11. J.A. Shaw, N.L. Seldomridge, D.L. Dunkle, P.W. Nugent, L.H. Spangler, Polarization lidar measurements of honey bees in flight for locating land mines. Opt. Expr. 13, 5853 (2005)

    Article  ADS  Google Scholar 

  12. E.S. Carlsten, G.R. Wicks, K.S. Repasky, J.L. Carlsten, J.J. Bromenshenk, C.B. Henderson, Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines. Appl. Opt. 50, 2112 (2011)

    Article  ADS  Google Scholar 

  13. M. Brydegaard, Z.G. Guan, M. Wellenreuther, S. Svanberg, Fluorescence LIDAR imaging of insects—feasibility study. Appl. Opt. 48, 5677 (2009)

    Article  ADS  Google Scholar 

  14. Z.G. Guan, M. Brydegaard, P. Lundin, M. Wellenreuther, E. Svensson, S. Svanberg, Insect monitoring with fluorescence LIDAR techniques—field experiments. Appl. Opt. 48, 5668 (2010)

    Google Scholar 

  15. L. Mei, Z.G. Guan, H.J. Zhou, J. Lv, Z.R. Zhu, J.A. Cheng, F.J. Chen, C. Löfstedt, S. Svanberg, G. Somesfalean, Agricultural pest monitoring using fluorescence lidar techniques. Appl. Phys. B 106, 733 (2011)

    Article  ADS  Google Scholar 

  16. M. Brydegaard, A. Gebru, S. Svanberg, Super resolution laser radar with blinking atmospheric particles—application to interacting flying insects. Prog. Electromagn. Res. 147, 141 (2014)

    Article  Google Scholar 

  17. M. Brydegaard, Towards quantitative optical cross sections in entomological laser radar—potential of temporal and spherical parameterizations for identifying atmospheric fauna. PLoS One 10(8), e0135231 (2015). doi:10.1371/journal.pone.0135231

    Article  Google Scholar 

  18. A. Runemark, M. Wellenreuther, H. Jayaweera, S. Svanberg, M. Brydegaard, Rare events in remote dark field spectroscopy: an ecological case study of insects. IEEE JSTQE 18, 1573 (2011)

    Google Scholar 

  19. S.M. Zhu, Y.Y. Li, N.L. Gao, T.Q. Li, G.Y. Zhao, S. Svanberg, C.H. Lu, J.D. Hu, J.R. Huang, H.Q. Feng, Optical remote detection of flying Chinese agricultural pest insects using dark-field reflectance measurements, (2016) (To appear)

  20. A.C. Rechner, Methods of Multivariate Analysis (Wiley, New York, 2002)

    Google Scholar 

  21. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd edn. (Wiley, Hoboken, 2013)

    Google Scholar 

  22. S. Berthier, E. Charron, J. Boulenguez, Morphological structure and optical properties of the wings of Morphidae. Insect Sci. 13, 145 (2006)

    Article  Google Scholar 

  23. S. Cantrill, Nobel Prize 2008: green fluorescent protein. Chem. Nat. (2008). doi:10.1038/nchem.75

    Google Scholar 

  24. B. Galle, T. Olsson, S. Svanberg, The fluorescence properties of jellyfish. Göteborg Institute of Physics Reports, GIPR-181 (1979) (in Swedish)

Download references

Acknowledgments

The authors gratefully acknowledge the support of Prof. Sailing He and Prof. Katarina Svanberg. This work was financially supported by a Guangdong Province Innovation Research Team Program (No. 201001D0104799318), the National Natural Science Foundation of China (No. 31401731), and the Special Funds Program for the Cultivation of Guangdong College Students' Scientific and Technological Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Svanberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.Y., Zhang, H., Duan, Z. et al. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains. Appl. Phys. B 122, 213 (2016). https://doi.org/10.1007/s00340-016-6485-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6485-x

Keywords

Navigation