Skip to main content

Advertisement

Log in

520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Colosimo, G. Doumy, C.I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A.M. March, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat Phys. 4, 386 (2008)

    Article  Google Scholar 

  2. B. Shan, Z. Chang, Phys. Rev. A. 65, 011804 (2001)

    Article  ADS  Google Scholar 

  3. A.D. Shiner, C. Trallero-Herrero, N. Kajumba, H.C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Phys. Rev. Lett. 103, 073902 (2009)

    Article  ADS  Google Scholar 

  4. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz, Opt. Lett. 37, 4973 (2012)

    Article  ADS  Google Scholar 

  5. K.-H. Hong, C.-J. Lai, J.P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G.J. Stein, L.E. Zapata, F.X. Kärtner, Opt. Lett. 39, 3145 (2014)

    Article  ADS  Google Scholar 

  6. Y. Yin, J. Li, X. Ren, K. Zhao, Y. Wu, E. Cunningham, Z. Chang, Opt. Lett. 41, 1142 (2016)

    Article  ADS  Google Scholar 

  7. S.L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, J. Biegert, Opt. Lett. 39, 5383 (2014)

    Article  ADS  Google Scholar 

  8. M.C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010)

    Article  ADS  Google Scholar 

  9. J. Li, X. Ren, Y. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z. Chang, Appl. Phys. Lett. 108, 231102 (2016)

    Article  ADS  Google Scholar 

  10. J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, Nat. Commun. 8 (2017)

  11. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M.M. Murnane, H.C. Kapteyn, Opt. Lett. 36, 2755 (2011)

    Article  ADS  Google Scholar 

  12. K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian, Opt. Lett. 38, 2159 (2013)

    Article  ADS  Google Scholar 

  13. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O.D. Mücke, A. Pugzlys, Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Wandel, G. Xu, Y. Yin, I. Jovanovic, J. Phys. B: At. Mol. Opt. Phys. 47, 234016 (2014)

    Article  ADS  Google Scholar 

  15. S. Wandel, M.-W. Lin, Y. Yin, G. Xu, I. Jovanovic, Opt. Express. 24, 5287 (2016)

    Article  ADS  Google Scholar 

  16. L. von Grafenstein, M. Bock, D. Ueberschaer, K. Zawilski, P. Schunemann, U. Griebner, T. Elsaesser, Opt. Lett. 42, 3796 (2017)

    Article  ADS  Google Scholar 

  17. M. Baudisch, M. Hemmer, H. Pires, J. Biegert, Opt. Lett. 39, 5802 (2014)

    Article  ADS  Google Scholar 

  18. Y. Chen, Y. Li, W. Li, X. Guo, Y. Leng, Opt. Commun. 365, 7 (2016)

    Article  ADS  Google Scholar 

  19. Y. Yin, X. Ren, A. Chew, J. Li, Y. Wang, F. Zhuang, Y. Wu, Z. Chang, Sci. Reports 7, 11097 (2017)

    Article  ADS  Google Scholar 

  20. A. Baltuška, T. Fuji, T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002)

    Article  ADS  Google Scholar 

  21. Q. Zhang, E.J. Takahashi, O.D. Mücke, P. Lu, K. Midorikawa, Opt. Express. 19, 7190 (2011)

    Article  ADS  Google Scholar 

  22. Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, Z. Chang, Opt. Express. 24, 24989 (2016)

    Article  ADS  Google Scholar 

  23. B.-Q. Chen, C. Zhang, C.-Y. Hu, R.-J. Liu, Z.-Y. Li, Phys. Rev. Lett. 115, 083902 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Scientific Instruments Development Program of China (2012YQ120047), the National Natural Science Foundation of China under Grant Nos. 61575217 and 11774410, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB16030200

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohua Wang or Zhiyi Wei.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Wang, Z., Hu, C. et al. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier. Appl. Phys. B 124, 31 (2018). https://doi.org/10.1007/s00340-018-6896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6896-y

Navigation