Skip to main content

Advertisement

Log in

Simulation of force-insensitive optical cavities in cubic spacers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We analyze the properties of optical cavities contained in spacers with approximate octahedral symmetry and made of different materials, following the design of Webster and Gill (Opt Lett 36:3572, 2011). We show that, for isotropic materials with Young’s modulus less than 200 GPa, the Poisson’s ratio \(\nu\) must lie in a “magic” range \(0.13<\nu <0.23\) to null the influence of the forces supporting the spacer. This restriction can be overcome with the use of anisotropic materials such as silicon. A detailed study aiming at identification of all suitable crystal orientations of silicon with respect to the resonator body is performed, and the relation to the Poisson’s ratio and the Young’s modulus along these orientations is discussed. We also perform an analysis of the sensitivity of the cavity performance to errors in spacer manufacturing. We find that the orientation of the [110] or [100] crystallographic directions oriented along one of the three optical axes of the resonator provides low sensitivities to imprecise manufacturing and interesting options for fundamental physics experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Phys. Rev. Lett. 116, 063001 (2016)

    Article  ADS  Google Scholar 

  2. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015)

    Article  ADS  Google Scholar 

  3. T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Safronova, W. Strouse, G.F. Tew, J. Ye, Nat. Commun. 6, 6896 (2015)

    Article  ADS  Google Scholar 

  4. P. Antonini, M. Okhapkin, E. Göklü, S. Schiller, Phys. Rev. A 71, 050101(R) (2005)

    Article  ADS  Google Scholar 

  5. C. Eisele, A.Y. Nevsky, S. Schiller, Phys. Rev. Lett. 103, 090401 (2009)

    Article  ADS  Google Scholar 

  6. E. Wiens, A.Y. Nevsky, S. Schiller, Phys. Rev. Lett. 117, 271102 (2016)

    Article  Google Scholar 

  7. S. Webster, P. Gill, Opt. Lett. 36, 3572 (2011)

    Article  ADS  Google Scholar 

  8. K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  9. M. Notcutt, L.S. Ma, A.D. Ludlow, S.M. Foreman, J. Ye, J.L. Hall, Phys. Rev. A 73, 031804 (2006)

    Article  ADS  Google Scholar 

  10. J. Davila-Rodriguez, F.N. Baynes, A.D. Ludlow, T.M. Fortier, H. Leopardi, S.A. Diddams, F. Quinlan, Opt. Lett. 42, 1277 (2017)

    Article  ADS  Google Scholar 

  11. S. Seel, R. Storz, G. Ruoso, J. Mlynek, S. Schiller, Phys. Rev. Lett. 78, 4741 (1997)

    Article  ADS  Google Scholar 

  12. D.G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J.M. Robinson, J. Ye, F. Riehle, U. Sterr, Phys. Rev. Lett. 118, 263202 (2017)

    Article  ADS  Google Scholar 

  13. W. Zhang, J.M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J.L. Hall, T. Legero, D.G. Matei, F. Riehle, U. Sterr, J. Ye, Phys. Rev. Lett. 119, 243601 (2017)

    Article  ADS  Google Scholar 

  14. E. Wiens, Q. Chen, I. Ernsting, H. Luckmann, A.Y. Nevsky, U. Rosowski, S. Schiller, Opt. Lett. 39, 3242 (2014)

    Article  ADS  Google Scholar 

  15. E. Wiens, Q. Chen, I. Ernsting, H. Luckmann, A.Y. Nevsky, U. Rosowski, S. Schiller, Opt. Lett. 40, 68 (2015)

    Article  ADS  Google Scholar 

  16. C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M.J. Martin, J. Ye, Opt. Lett. 39, 5102 (2014)

    Article  ADS  Google Scholar 

  17. P.R. Cromwell, Polyhedra (Cambridge University Press, Cambridge, 2008)

    MATH  Google Scholar 

  18. Product sheet from Rohm and Haas Co. http://www.dow.com/. Accessed 12 June 2018

  19. Product sheet from Corning, Inc. https://www.corning.com. Accessed 12 June 2018

  20. N118C Product sheet from Krosaki Harima. https://krosaki-fc.com/en/ceramics/nexcera.html. Accessed 12 June 2018

  21. Product sheet from SCHOTT North America, Inc. http://www.us.schott.com/english/index.html. Accessed 12 June 2018

  22. M. Bass, Handbook of Optics, 2nd edn. (McGraw-Hill, New York, 1995)

    Google Scholar 

  23. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1964)

    MATH  Google Scholar 

  24. J.J. Wortman, R.A. Evans, J. Appl. Phys. 36, 153 (1965)

    Article  ADS  Google Scholar 

  25. M.A. Hopcroft, W.D. Nix, T.W. Kenny, J. Microelectromech. Syst. 19, 229 (2010)

    Article  Google Scholar 

  26. L. Zhang, R. Barrett, P. Cloetens, C. Detlefs, M. Sanchez del Rio, J. Synchrotron Radiat. 21, 507 (2014)

    Article  Google Scholar 

  27. R.H. Battin, An introduction to the mathematics and methods of astrodynamics, rev. AIAA Education Series (American Institute of Aeronautics and Astronautics Inc, Reston, 1999)

    MATH  Google Scholar 

  28. B. Parker, G. Marra, L.A.M. Johnson, H.S. Margolis, S.A. Webster, L. Wright, S.N. Lea, P. Gill, P. Bayvel, Appl. Opt. 53, 8157 (2014)

    Article  ADS  Google Scholar 

  29. J. Millo, C. Lacroute, A. Didier, E. Rubiola, Y. Kersal, J. Paris, in Proc. of the 2014 European Frequency and Time Forum, pp. 531–534 (IEEE, 2014). https://doi.org/10.1109/EFTF.2014.7331555

  30. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M.J. Martin, L. Chen, J. Ye, Nat. Photon. 6, 687 (2012)

    Article  ADS  Google Scholar 

  31. C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134, A1058 (1964)

    Article  ADS  Google Scholar 

  32. K.G. Lyon, G.L. Salinger, C.A. Swenson, G.K. White, J. Appl. Phys. 48, 865 (1977)

    Article  ADS  Google Scholar 

  33. J.P. Richard, J.J. Hamilton, Rev. Sci. Instrum. 62, 2375 (1991)

    Article  ADS  Google Scholar 

  34. W.P. Mason, Physical Acoustics and the Properties of Solids (Van Nostrand, Princeton, 1958)

    Google Scholar 

  35. D.G. Matei, T. Legero, C. Grebing, S. Häfner, C. Lisdat, R. Weyrich, W. Zhang, L. Sonderhouse, J.M. Robinson, F. Riehle, J. Phys. Conf. Ser. 723, 012031 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Legero (PTB) for providing us with the design of the biconical Si resonator allowing us to test our simulations, A. Nevsky for stimulating discussions, and D. Sutyrin for his help with the simulations. This work was performed in the framework of project SCHI 431/21-1 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiens, E., Schiller, S. Simulation of force-insensitive optical cavities in cubic spacers. Appl. Phys. B 124, 140 (2018). https://doi.org/10.1007/s00340-018-7000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7000-3

Navigation