Skip to main content

Advertisement

Log in

Green synthesis, characterization of silver nanoparticles and their study on antibacterial activity and optical limiting behavior

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An enhanced method of synthesizing silver nanoparticles (AgNPs) is adopted herein using the aqueous extract of Decalepis hamiltonii root as both reducing and capping agents. In the recent years, metal nanoparticles have been actively synthesized using green route which is considered as an efficient, inexpensive and eco-friendly method. The generation of AgNPs was first observed from the UV–visible spectroscopy. The XRD analysis confirms the FCC structure with an average crystal size of 22 nm which is calculated using Scherrer’s formula. The functional group responsible for the reduction of AgNPs is identified from the FTIR analysis. Transmission electron microscopy (TEM) showed the formation of silver nanoparticles of size ranging from 5 to 20 nm with few agglomerations. The antibacterial studies were carried out against the Escherichia coli and Staphylococcus aureus using minimum inhibitory concentration (MIC) technique. The third-order nonlinear optical properties of AgNPs were measured by the Z-scan technique. The negative nonlinearity observed was utilized for the study of optical limiting behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sunkar, C.V. Nachiyar, Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2, 953–959 (2012). https://doi.org/10.1016/S2221-1691(13)60006-4

    Article  Google Scholar 

  2. S.J. Park, S.W. Lee, K.J. Lee, J.H. Lee, K.D. Kim, J.H. Jeong, J.H. Choi, An Antireflective nanostructure array fabricated by nanosilver colloidal lithography on a silicon substrate. Nanoscale Res. Lett. 5, 1570–1577 (2010). https://doi.org/10.1007/s11671-010-9678-y

    Article  ADS  Google Scholar 

  3. W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, L. Lelong, L. Lachal, K.A. Richardson, Physical and optical properties of sol–gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature. J. Appl. Phys. 93, 9553–9561 (2003). https://doi.org/10.1063/1.1571215

    Article  ADS  Google Scholar 

  4. V.I. Pârvulescu, B. Cojocaru, V. Pârvulescu, R. Richards, Z. Li, C. Cadigan, P. Granger, P. Miquel, C. Hardacre, Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. J. Catal. 25, 92–100 (2010). https://doi.org/10.1016/j.jcat.2010.03.008

    Article  Google Scholar 

  5. V.K. Shukla, R.S. Yadav, P. Yadav, A.C.J. Pandey, Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. J. Hazard. Mater. 2012, 161–166 (2012). https://doi.org/10.1016/j.jhazmat.2012.01.071

    Article  Google Scholar 

  6. M. Gratzel, Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

    Article  ADS  Google Scholar 

  7. M. Okuda, Y. Kobayashi, K. Suzuki, K. Sonoda, T. Kondoh, A. Wagawa, A. Kondo, H. Yoshimura, Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 5, 991–993 (2005). https://doi.org/10.1021/nl050556q

    Article  ADS  Google Scholar 

  8. J. Dai, M.L. Bruening, Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett. 2, 497–501 (2005). https://doi.org/10.1021/nl025547

    Article  ADS  Google Scholar 

  9. C.B. Murray, S. Sun, H. Doyle, T. Betley, Monodisperse 3d transition metal (Co, Ni, Fe) nanoparticles. MRS Bull. 26, 985–991 (2001). https://doi.org/10.1557/mrs2001.254

    Article  Google Scholar 

  10. Matthew E. Stewart, Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers, Ralph G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008)

    Article  Google Scholar 

  11. T. Chung, S.-Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11, 10907–10929 (2011). https://doi.org/10.3390/s111110907

    Article  Google Scholar 

  12. S.P. Dubey, M. Lahtinen, M. Sillanpää, Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45, 1065–1071 (2010). https://doi.org/10.1016/j.procbio.2010.03.024

    Article  Google Scholar 

  13. J. Kasthuri, K. Kathiravan, N. Rajendiran, Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J. Nanopart. Res. 11, 1075–1085 (2009). https://doi.org/10.1007/s11051-008-9494-9

    Article  ADS  Google Scholar 

  14. R.N. Rati, P. Nilotpala, B. Debadhyan, M.P. Kshyama, M. Srabani, B.S. Lala, K.M. Barada, Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanopart. Res. 13, 3129–3137 (2011). https://doi.org/10.1007/s11051-010-0208-8

    Article  Google Scholar 

  15. S.R. Boddu, V.R. Gutti, T.K. Ghosh, R.V. Tompson, S.K. Loyalka, Gold silver and palladium nanoparticles/nanoagglomerate generation, collection, and characterization. J. Nanopart. Res. 13, 6591–6601 (2011). https://doi.org/10.1007/s11051-011-0566-x

    Article  ADS  Google Scholar 

  16. D.S. Sheny, D. Philip, J. Mathew, Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim. Acta A Mol. Biomol. Spectrosc. 91, 35–38 (2012). https://doi.org/10.1016/j.saa.2012.01.063

    Article  ADS  Google Scholar 

  17. K. Kalishwaralal, V. Deepak, S. Ram Kumar Pandian, M. Kottaisamy, S. Barathmani Kanth, B. Kartikeyan, S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77, 257–262 (2010). https://doi.org/10.1016/j.colsurfb.2010.02.007

    Article  Google Scholar 

  18. K. Mukunthan, S. Balaji, Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int. J. Green. Nanotechnol. 4(2), 71–79 (2012). https://doi.org/10.1080/19430892.2012.676900

    Article  Google Scholar 

  19. X. Li, H. Xu, Z.S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. (2011). https://doi.org/10.1155/2011/270974. (Article ID 270974)

    Article  Google Scholar 

  20. A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3(2), 168–171 (2007). https://doi.org/10.1016/j.nano.2007.02.001

    Article  Google Scholar 

  21. S.S. Khan, A. Mukherjee, N. Chandrasekaran, Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloids Surf. B 87(1), 129–138 (2011). https://doi.org/10.1016/j.colsurfb.2011.05.012

    Article  Google Scholar 

  22. F. Martinez-Gutierrez, P.L. Olive, A. Banuelos, E. Orrantia, N. Nino, E.M. Sanchez, F. Ruiz, H. Bach, Y. Av-Gay, Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6(5), 681–688 (2010). https://doi.org/10.1016/j.nano.2010.02.001

    Article  Google Scholar 

  23. T. Premkumar, Y. Lee, K.E. Geckeler, Macrocycles as a tool: a facile and one-pot synthesis of silver nanoparticles using cucurbituril designed for cancer therapeutics. Chem. Eur. J. 16(38), 11563–11566 (2010). https://doi.org/10.1002/chem.201001325

    Article  Google Scholar 

  24. H.H. Lara, N.V. Ayala-Nuñez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 8, 1 (2010). https://doi.org/10.1186/1477-3155-8-1

    Article  Google Scholar 

  25. D.R. Monteiro, S. Silva, M. Negri, L.F. Gorup, E.R. de Camargo, R. Oliveira, D.B. Barbosa, M. Henriques, Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Lett. Appl. Microbiol. 54(5), 383–391 (2012). https://doi.org/10.1111/j.1472-765X.2012.03219.x

    Article  Google Scholar 

  26. A. Panácek, M. Kolár, R. Vecerová, R. Prucek, J. Soukupová, V. Krystof, P. Hamal, R. Zboril, L. Kvítek, Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31), 6333–6340 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.065

    Article  Google Scholar 

  27. Y. Sun, B.T. Mayers, Y. Xia, Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2, 481–485 (2002). https://doi.org/10.1021/nl025531v

    Article  ADS  Google Scholar 

  28. L. Stephan, A.E. Mostafa, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410–8426 (1999). https://doi.org/10.1021/jp9917648

    Article  Google Scholar 

  29. A. Frattini, N. Pellegri, D. Nicastro, O. de Sanctis, Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys. 94(1), 148–152 (2005). https://doi.org/10.1016/j.matchemphys.2005.04.023

    Article  Google Scholar 

  30. J. George, J. Pereira, S. Divakar, K. Udaysankar, G.A. Ravi Shankar: A method for the preparation of active fraction from the root of Decalepis hamiltonii; useful as bio insecticide. 1998. Indian Patent No. 1301/Dec/98

  31. J. George, J. Pereria, S. Divakar, K. Udaysankar, G.A. Ravishankar, Bioinsecticide from swallow root (Decalepis hamiltonii) wight and protects food grains against insect infestation. Curr. Sci. 77, 501–502 (1999)

    Google Scholar 

  32. T.S. Muralidhar, S. Acharya, C. Ramyashree, S. Reddy, M.R. Shruthi, S.S. Lingaiah, Study of bioactive components in Decalepis hamiltonii in vitro. IOSR J. Pharm. 4, 62–66 (2014)

    Google Scholar 

  33. P. Prakash, G. Thiyagarajan, R. Manivasagaperumal, Phytochemical screening and antibacterial activity of root extracts of Decalepis hamiltonii Wight & Arn. Int J Pharma Res Rev. 3(11), 33–38 (2014). (ISSN: 2278-6074 )

    Google Scholar 

  34. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles. Langmiur 12(3), 788–800 (1996). https://doi.org/10.1021/la9502711

    Article  Google Scholar 

  35. H.M.M. Ibrahim, Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 1, 1 (2015). https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  36. Daizy Philip, Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta Part. A 75(3), 1078–1081 (2010). https://doi.org/10.1016/j.saa.2009.12.058

    Article  ADS  Google Scholar 

  37. V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 116–121 (2014). https://doi.org/10.1016/j.saa.2014.03.107

    Article  ADS  Google Scholar 

  38. D. Philip, C. Unni, Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E 43(7), 1318–1322 (2011). https://doi.org/10.1016/j.physe.2010.10.006

    Article  Google Scholar 

  39. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. For enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces 108, 255–259 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.017

    Article  Google Scholar 

  40. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9, 217–227 (2016)

    Article  Google Scholar 

  41. S. Palanisamy, P. Rajasekar, G. Vijayaprasath, G. Ravi, R. Manikandan, N.M. Prabhu, A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mat Lett. 189, 196–200 (2017)

    Article  Google Scholar 

  42. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012)

    Article  Google Scholar 

  43. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)

    Article  Google Scholar 

  44. M. Spasenovi, M. Betz, L. Costa, H.M. Van Driel, All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys. Rev. 77, 085201 (2008)

    Article  Google Scholar 

  45. D.S. Chemla, J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1 (Academic Press, London, 1987)

    Google Scholar 

  46. J. Zyss, Molecular Nonlinear Optics: Materials Physics and Devices (Academic Press, New York, 1993)

    Google Scholar 

  47. J. Badan, R. Hierle, A. Perigand, J. Zyss, in Nonlinear Optical Properties of Organic Molecules and Polymeric Materials, vol. 233 D. 5, ed. by D.J. Williams (American Chemical Society, Washington, DC, 1993)

    Google Scholar 

  48. C.Q. Tang, Q. Zheng, H.M. Zhu, L.X. Wang, S.C. Chen, E. Ma, X.Y. Chen, Two-photon absorption and optical power limiting properties of ladder-type tetraphenylene cored chromophores with different terminal groups. J. Mater. Chem. C 1, 1771–1780 (2013)

    Article  Google Scholar 

  49. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  50. A. Shanthi, C. Krishnan, P. Selvarajan, Growth and characterization of a single crystal of urea adipic acid (UAA)—a third order nonlinear optical material. Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 521–528 (2014)

    Article  ADS  Google Scholar 

  51. Shalini P. Delphia, S. Senthil, P. Kannan, G. Vinitha, A. Ramalingam, Investigation on substituent effect in novel azo-naphthol dyes containing polymethacrylates for non-linear optical studies. J. Phys. Chem. Solids 68, 1812–1820 (2007)

    Article  ADS  Google Scholar 

  52. M. Hanack, T. Schneider, M. Barthel, J.S. Shirk, S.R. Flom, R.G.S. Pong, Indium phthalocyanines and naphthalocyanines for optical limiting. Coordin. Chem. Rev. 219, 235–258 (2001). https://doi.org/10.1016/S0010-8545(01)00327-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Vidyalakshmi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisha, B., Vidyalakshmi, Y., Geetha, D. et al. Green synthesis, characterization of silver nanoparticles and their study on antibacterial activity and optical limiting behavior. Appl. Phys. B 125, 123 (2019). https://doi.org/10.1007/s00340-019-7226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7226-8

Navigation