Skip to main content
Log in

Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A two-line Kr PLIF approach is presented for thermometry in moderately sooting flames. This technique leverages the spectral line-broadening phenomenon to choose the two excitation wavelengths whose Kr PLIF signal ratio effectively cancels out the composition dependence while retaining the temperature dependence. Furthermore, the Kr PLIF ratio for the chosen wavelengths also exhibits a monotonic trend with temperature, and span a wide range of values to ensure adequate dynamic range on the measurements. The technique is evaluated in the near field of an ethylene laminar jet flame where the peak soot loading was about \(0.15~\mathrm{ppm}\). Krypton gas was added in small amounts to both fuel mixture and air co-flow. Comparing the Kr PLIF fields with the LII fields showed that the main source of interference to Kr PLIF signal is from the soot interference, which contributed to a maximum of \(20-50\%\) of the total signal at different axial locations. Interestingly, the interference from PAH molecules was observed to be less than \(1\%\) of the total signal. The soot interference was retained during data processing to obtain an evaluation of the measurement uncertainty caused by the soot interference and the maximum soot loading that could be tolerated. The temperature in the regions away from soot layers exhibit very consistent values with literature, where the value extended from close to \(300~\mathrm{K}\) in the fuel core and air co-flow through about \(2200~\mathrm{K}\) in the reaction zone. The presence of soot, however, caused a noticeable depreciation in the measured temperature by about \(200~\mathrm{K}\) at the peak sooting location. It is further noted that the mean systematic error of \(50~\mathrm{K}\) is expected at \(f_v = 60~\mathrm{ppb}\). This limit is observed to be a strong function of the fractional contribution of the soot interference to the overall signal and can be substantially extended by subtracting the soot interference and using higher excitation energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Glassman, R.A. Yetter, N.G. Glumac, Combustion (Elsevier Inc. Press, Amsterdam, 1977)

    Google Scholar 

  2. C.K. Law, Combustion physics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  3. S.R. Turns, An introduction to combustion: concepts and applications (McGraw-Hill Press, New York City, 1996)

    Google Scholar 

  4. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog. Energy Combust. Sci. 32(3), 247–294 (2006)

    Article  Google Scholar 

  5. H.A. Michelsen, Probing soot formation, chemical and physical evolution, and oxidation: a review of in situ diagnostic techniques and needs. Proc. Combust. Inst. 36(1), 717–735 (2017)

    Article  Google Scholar 

  6. C. R. Shaddix, J. Zhang, Joint Temperature-Volume Fraction Statistics of Soot in Turbulent Non-Premixed Jet Flames, in 8th U.S. National Combustion Meeting, vol. 3 (Park City, Utah, 2013), pp. 2386–2393. https://www.osti.gov/biblio/1069034

  7. C. R. Shaddix, J. Zhang, R. W. Schefer, J. Doom, C. Joseph, S. Kook, L. M. Pickett, H. Wang, Understanding and Predicting Soot Generation in Turbulent Non-Premixed Jet Flames. Technical Report 7178, Sandia National Laboratories, Livermore, CA (2010). https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2010/107178.pdf

  8. C.R. Shaddix, J.E. Harrington, K.C. Smyth, Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame. Combust. Flame 99, 723–732 (1994)

    Article  Google Scholar 

  9. R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Soot particle measurements in diffusion flames. Combust. Flame 51, 203–218 (1983)

    Article  Google Scholar 

  10. R.J. Santoro, T.T. Yeh, J.J. Horvath, H.G. Semerjian, The transport and growth of soot particles in laminar diffusion flames. Combust. Sci. Technol. 53(2–3), 89–115 (1987)

    Article  Google Scholar 

  11. H. Pitsch, E. Riesmeier, N. Peters, Unsteady flamelet modeling of soot formation in turbulent diffusion flames. Combust. Sci. Technol. 158(1), 389–406 (2000)

    Article  Google Scholar 

  12. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch, Damköhler number effects on soot formation and growth in turbulent nonpremixed flames. Proc. Combust. Inst. 35(2), 1215–1223 (2015)

    Article  Google Scholar 

  13. H. Wang, Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33(1), 41–67 (2011)

    Article  Google Scholar 

  14. A.C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach Publishers, Amsterdam, 1996)

    Book  Google Scholar 

  15. R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering. Appl. Phys. B Lasers Opt. 108(2), 377–392 (2012)

    Article  ADS  Google Scholar 

  16. C. Espey, J.E. Dec, Planar laser rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet. Combust. Flame 109, 65–86 (1997)

    Article  Google Scholar 

  17. A.G. Hsu, V. Narayanaswamy, N.T. Clemens, J.H. Frank, Mixture fraction imaging in turbulent non-premixed flames with two-photon LIF of krypton. Proc. Combust. Inst. 33(1), 759–766 (2011)

    Article  Google Scholar 

  18. R.B. Miles, W.R. Lempert, J.N. Forkey, Laser Rayleigh scattering. Measure. Sci. Technol. 12(5), R33–R51 (2001). https://doi.org/10.1088/0957-0233/12/5/201

    Article  ADS  Google Scholar 

  19. J.N. Forkey, Development and demonstration of filtered Rayleigh scattering: a laser based flow diagnostic for planar measurement of velocity, temperature and pressure. ProQuest Dissertations and Theses. ProQuest Dissertations Publishing, Princeton University (1996)

  20. G. Elliott, N. Glumac, C. Carter, Molecular filtered rayleigh scattering applied to combustion. Measure. Sci. Technol. 12, 452–466 (2001)

    Article  ADS  Google Scholar 

  21. B. Kip, R. Meier, Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes Raman bands. Appl. Spectrosc. 44(4), 707–711 (2000)

    Article  ADS  Google Scholar 

  22. F. Rabenstein, A. Leipertz, Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering. Appl. Opt. 36(27), 6989–6996 (1997)

    Article  ADS  Google Scholar 

  23. P.E. Bengtsson, M. Aldén, S. Kröll, D. Nilsson, Vibrational CARS thermometry in sooty flames: quantitative evaluation of C2 absorption interference. Combust. Flame 82(2), 199–210 (1990)

    Article  Google Scholar 

  24. P.E. Bengtsson, L. Martinsson, M. Aldén, S. Kröll, Rotational cars thermometry in sooting flames. Combust. Sci. Technol. 81(1–3), 129–140 (1992)

    Article  Google Scholar 

  25. S.P. Kearney, M.N. Jackson, Dual-pump coherent anti-stokes Raman scattering thermometry in heavily sooting flames. AIAA J. 45(12), 2947–2956 (2007)

    Article  ADS  Google Scholar 

  26. S.P. Kearney, K. Frederickson, T.W. Grasser, Dual-pump coherent anti-stokes Raman scattering thermometry in a sooting turbulent pool fire. Proc. Combust. Inst. 32 I(1), 871–878 (2009)

    Article  Google Scholar 

  27. C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy in sooting flames. Proc. Combust. Inst. 33(1), 831–838 (2011)

    Article  Google Scholar 

  28. R. Giezendanner-Thoben, U. Meier, W. Meier, M. Aigner, Phase-locked temperature measurements by two-line OH PLIF thermometry of a self-excited combustion instability in a gas turbine model combustor. Flow Turbul. Combust. 75(1–4), 317–333 (2005)

    Article  Google Scholar 

  29. J.L. Palmer, R.K. Hanson, combustion gases with two-line OH fluorescence. Appl. Opt. 35(3), 435–499 (1996)

    Article  ADS  Google Scholar 

  30. W.G. Bessler, F. Hildenbrand, C. Schulz, Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame. Appl. Opti. 40(6), 748–756 (2001)

    Article  ADS  Google Scholar 

  31. N. Omenetto, P. Benetti, G. Rossi, Flame temperature measurements by means of atomic fluorescence spectrometry. Spectrochim. Acta Part B 27(10), 453–461 (1972)

    Article  ADS  Google Scholar 

  32. N. Omenetto, P. Benetti, L.P. Hart, J.D. Winefordner, C. Th, J. Alkemade, Non-linear optical behavior in atomic fluorescence flame spectrometry. Spectrochim. Acta Part B 28(8), 289–300 (1973)

    Article  ADS  Google Scholar 

  33. J.E. Dec, J.O. Keller, High speed thermometry using two-line atomic fluorescence. Symposium (International) on Combustion 21(1), 1737–1745 (1988). https://doi.org/10.1016/S0082-0784(88)80407-7

    Article  Google Scholar 

  34. J. Engström, J. Nygren, M. Aldén, C.F. Kaminski, Two-line atomic fluorescence as a temperature probe for highly sooting flames. Opt. Lett. 25(19), 1469–1471 (2000)

    Article  ADS  Google Scholar 

  35. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Development of temperature imaging using two-line atomic fluorescence. Appl. Opt. 48(6), 1237–48 (2009)

    Article  ADS  Google Scholar 

  36. Q.N. Chan, P.R. Medwell, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Assessment of interferences to nonlinear two-line atomic fluorescence (NTLAF) in sooty flames. Appl. Phy. B 104(1), 189–198 (2011)

    Article  ADS  Google Scholar 

  37. D. Gu, Z. Sun, B.B. Dally, P.R. Medwell, Z.T. Alwahabi, G.J. Nathan, Simultaneous measurements of gas temperature, soot volume fraction and primary particle diameter in a sooting lifted turbulent ethylene/air non-premixed flame. Combust. Flame 179, 33–50 (2017)

    Article  Google Scholar 

  38. N. Hansen, R.S. Tranter, K. Moshammer, J.B. Randazzo, J.P.A. Lockhart, P.G. Fugazzi, T. Tao, A.L. Kastengren, 2D-imaging of sampling-probe perturbations in laminar premixed flames using Kr X-ray fluorescence. Combust. Flame 181, 214–224 (2017)

    Article  Google Scholar 

  39. O. Park, R.A. Burns, O.R.H. Buxton, N.T. Clemens, Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame. Proc. Combust. Inst. 36(1), 899–907 (2017)

    Article  Google Scholar 

  40. D. Zelenak, V. Narayanaswamy, Composition-independent mean temperature measurements in laminar diffusion flames using spectral lineshape information. Experiments in Fluids 58(10), 147 (2017). https://doi.org/10.1007/s00348-017-2430-y

    Article  ADS  Google Scholar 

  41. D.C. Zelenak, An investigation of the Krypton laser-induced fluorescence spectral lineshape for composition-independent thermometry applied to combustion environments. PhD thesis, North Crolina State University (2018). https://catalog.lib.ncsu.edu/catalog/NCSU4548771

  42. D.C. Zelenak, V. Narayanaswamy, Demonstration of a two-line Kr PLIF thermometry technique for gaseous combustion applications. Opt. Lett. 44(2), 367–370 (2019)

    Article  ADS  Google Scholar 

  43. D.C. Zelenak, W. Sealy, V. Narayanaswamy, Collisional broadening of Kr (4p6S01 to 5p[3/2]2) transition with combustion species as collision partners. J. Quant. Spectrosc. Radiat. Transf. 174, 28–38 (2016)

    Article  ADS  Google Scholar 

  44. A. Thorne, U. Litzén, S. Johansson, Spectrophysics – principles and applications (Springer, Berlin, 1999)

    Google Scholar 

  45. J.C. Miller, Two-photon resonant multiphoton ionization and stimulated emission in krypton and xenon. Phys. Rev. A 40(12), 6969–6976 (1989)

    Article  ADS  Google Scholar 

  46. N.H. Qamar, G.J. Nathan, Z.T. Alwahabi, K.D. King, The effect of global mixing on soot volume fraction: measurements in simple jet, precessing jet, and bluff body flames. Proc. Combust. Inst. 30(1), 1493–1500 (2005)

    Article  Google Scholar 

  47. V. Narayanaswamy, N.T. Clemens, Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames. Proc. Combust. Inst. 34(1), 1455–1463 (2013)

    Article  Google Scholar 

  48. J. Zhu, M.Y. Choi, G.W. Mulholland, S.L. Manzello, L.A. Gritzo, J. Suo-Anttila, Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proc. Combust. Inst. 29(2), 2367–2374 (2002)

    Article  Google Scholar 

  49. C.S. McEnally, A.M. Schaffer, M.B. Long, L.D. Pfefferle, M.D. Smooke, M.B. Colket, Computational and Experimental Study of Soot Formation in a Co-flow, Laminar Ethylene Diffusion Flame. Symposium (International) on Combustion 27(1), 1497–1505 (1998). https://doi.org/10.1016/S0082-0784(98)80557-2

    Article  Google Scholar 

  50. M.D. Smooke, C.S. McEnally, L.D. Pfefferle, R.J. Hall, M.B. Colket, Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combust. Flame 117(1–2), 117–139 (1999)

    Article  Google Scholar 

  51. A. Gomez, M.G. Littman, I. Glassman, Comparative study of soot formation on the centerline of axisymmetric laminar diffusion flames: fuel and temperature effects. Combust. Flame 70(2), 225–241 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from NSF CBET grant 1511216 and ARO grant W911NF-16-1-0087 with Ralph Anthenien as program manager for this work. The first author also acknowledges the support from North Carolina State University Graduate Fellowship Award to execute this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Sahoo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of topical collection on Laser-Induced Incandescence guest edited by Klaus Peter Geigle and Stefan Will.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, A., Narayanaswamy, V. Two-dimensional temperature field imaging in laminar sooting flames using a two-line Kr PLIF approach. Appl. Phys. B 125, 168 (2019). https://doi.org/10.1007/s00340-019-7280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7280-2

Navigation