Skip to main content
Log in

Two-color frequency-multiplexed IMS technique for gas thermometry at elevated pressures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The development and demonstration of a high-bandwidth two-color temperature sensor for high-pressure environments using intensity-modulation spectroscopy (IMS) is presented. The sensor utilized rapid intensity modulation, beam coalignment, and frequency multiplexing to deal with common challenges for laser absorption spectroscopy systems at high pressures and achieved a sensor bandwidth of \(100\,\) kHz. The P(16) and R(6) transitions of the \(\mathrm {H}_{\mathrm{2}}\mathrm{O}\) fundamental antisymmetric stretch rovibrational band near \(2.5\,\upmu\)m were chosen for initial development of this temperature diagnostic concept. Temperature validation experiments were conducted with shock tubes for both reactive and non-reactive environments. Shock tube experiments were first conducted with \(\mathrm {H}_{\mathrm{2}}\mathrm{O}\) and \(\mathrm {N}_{2}\) mixtures at pressures of around \(8.2\,\) atm, yielding temperature measurements with a standard deviation of \(2.9\,\,{\text {K}}\) within the steady-state test time. The performance of this system was then validated at \(36.9\,\) atm, yielding temperature measurements with a standard deviation of \(8.4\,\,{\text {K}}\). By comparing the measured temperatures with calculated temperatures based on ideal shock jump relations, the sensor achieved an average accuracy within \(4.3\,\,{\text {K}}\) of the known temperatures across multiple experiments spanning a range of 1030–1450 K, 8–38 atm. These results demonstrate that the IMS-based sensor enables high-precision measurements of temperature at high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 6740–6753 (2009)

    Article  ADS  Google Scholar 

  2. J. Shao, R. Choudhary, D.F. Davidson, R.K. Hanson, S. Barak, S. Vasu, Proc. Combust. Inst. 37, 4555–4562 (2018)

    Article  Google Scholar 

  3. D.F. Davidson, J. Shao, R. Choudhary, M. Mehl, N. Obrecht, R.K. Hanson, Proc. Combust. Inst. 37, 4885–4892 (2018)

    Article  Google Scholar 

  4. H. Wang, R. Xu, K. Wang, C.T. Bowman, R.K. Hanson, D.F. Davidson, K. Brezinsky, F.N. Egolfopoulos, Combust. Flame 193, 502–519 (2018)

    Article  Google Scholar 

  5. R. Xu, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang et al., Combust. Flame 193, 520–537 (2018)

    Article  Google Scholar 

  6. D.E. Burch, D.A. Gryvnak, R.R. Patty, C.E. Bartky, J. Opt. Soc. Am. 59, 267–280 (1969)

    Article  ADS  Google Scholar 

  7. M.Y. Perrin, J.M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 42, 311–317 (1989)

    Article  ADS  Google Scholar 

  8. A.G. Gaydon, I.R. Hurle, J. Chem. Educ. 41, 114 (1964)

    Google Scholar 

  9. J.J. Girard, R.K. Hanson, Appl. Phys. B 123, 264 (2017)

    Article  Google Scholar 

  10. W. Wei, W.Y. Peng, Y. Wang, R. Choudhary, S. Wang, J. Shao, R.K. Hanson, Appl. Phys. B 125, 9 (2019)

    Article  ADS  Google Scholar 

  11. H. Li, A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 89, 407–416 (2007)

    Article  ADS  Google Scholar 

  12. R.M. Spearrin, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 25, 125103 (2017)

    Article  ADS  Google Scholar 

  13. S. Wang, R.K. Hanson, Opt. Lett. 44, 578–581 (2019)

    Article  ADS  Google Scholar 

  14. R.K. Hanson, Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  15. X. Chao, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 34, 3583–3592 (2013)

    Article  Google Scholar 

  16. W.Y. Peng, C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Appl. Opt. 55, 9347–9359 (2016)

    Article  ADS  Google Scholar 

  17. W. Wei, J. Chang, Q. Huang, Q. Wang, Y. Liu, Z. Qin, Sens. Rev. 37, 2017–2024 (2017)

    Article  Google Scholar 

  18. W. Wei, J. Chang, Y. Liu, X. Chen, Z. Liu, Z. Qin, Q. Wang, Appl. Opt. 55, 3526–3530 (2016)

    Article  ADS  Google Scholar 

  19. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593–3601 (2013)

    Article  Google Scholar 

  20. S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 587–594 (2000)

    Article  Google Scholar 

  21. A. Farooq, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 111, 949–960 (2010)

    Article  ADS  Google Scholar 

  22. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052–1061 (2006)

    Article  ADS  Google Scholar 

  23. K. Wagatsuma, K. Hirokawa, Anal. Chem. 56, 2732–2735 (1984)

    Article  Google Scholar 

  24. X. Chao, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 20, 115201–115210 (2009)

    Article  ADS  Google Scholar 

  25. W.Y. Peng, R. Sur, C.L. Strand, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 122, 188 (2016)

    Article  ADS  Google Scholar 

  26. W. Wei, J. Chang, Q. Wang, Z. Qin, Sensors 17, 163–174 (2017)

    Article  Google Scholar 

  27. W. Wei, J. Chang, Q. Huang, C. Zhu, Q. Wang, Z. Wang, G. Lv, Appl. Phys. B 118, 75–83 (2015)

    Article  ADS  Google Scholar 

  28. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116, 705–716 (2014)

    Article  ADS  Google Scholar 

  29. M.W. Sigrist, Infrared Phys. Technol. 36, 415–425 (1995)

    Article  ADS  Google Scholar 

  30. A. Elia, P.M. Lugarà, C.D. Franco, V. Spagnolo, Sensors 9, 9619–9628 (2009)

    Google Scholar 

  31. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546–5560 (2009)

    Article  ADS  Google Scholar 

  32. J. Shao, Y. Zhu, S. Wang, D.D. Davidson, R.K. Hanson, Fuel 226, 338–344 (2018)

    Article  Google Scholar 

  33. A.S. Pine, J. Mol. Spectrosc. 82, 435–448 (1980)

    Article  ADS  Google Scholar 

  34. P.L. Varghese, R.K. Hanson, Appl. Opt. 23, 2376–2385 (1984)

    Article  ADS  Google Scholar 

  35. N.H. Ngo, N. Ibrahim, X. Landsheere, H. Tran, P. Chelin, M. Schwell, J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 113, 870–877 (2012)

    Article  ADS  Google Scholar 

  36. S.J. Cassady, W.Y. Peng, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 221, 172–182 (2018)

    Article  ADS  Google Scholar 

  37. L. Galatry, Phys. Rev. 122, 1218–1223 (1961)

    Article  ADS  Google Scholar 

  38. S.G. Rautian, I.I. Sobelman, Sov. Phys. Uspekhi. 9, 209–239 (1966)

    Google Scholar 

  39. R.J. Mathar, J. Opt. A: Pure Appl. Opt. 9, 470–476 (2007)

    Article  ADS  Google Scholar 

  40. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  41. R. Sur, S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 156, 80–87 (2015)

    Article  ADS  Google Scholar 

  42. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24, 125203 (2013)

    Article  ADS  Google Scholar 

  43. Y. Wang, Y. Cao, D.F. Davidson, R.K. Hanson, AIAA Scitech 2019 Forum, 2248, (2019)

  44. E.L. Petersen, D.F. Davidson, M. Rohrig, R.K. Hanson, Shock waves proceedings of the 20th international symposium on shock waves 2, 941–946 (1996)

    Google Scholar 

  45. E.L. Petersen, D.F. Davidson, R.K. Hanson, J. Prop. Power 1, 82–91 (1999)

    Article  Google Scholar 

  46. D.B. Oh, M.E. Paige, D.S. Bomse, Appl. Opt. 37, 2499–2501 (1998)

    Article  ADS  Google Scholar 

  47. M.F. Campbell, K.G. Owen, D.F. Davidson, R.K. Hanson, J. Thermophys. Heat Transfer 31, 586–608 (2017)

    Article  Google Scholar 

  48. C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116, 717–727 (2014)

    Article  ADS  Google Scholar 

  49. C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 130, 100–111 (2013)

    Article  ADS  Google Scholar 

  50. C.A. Almodovar, Infrared laser absorption spectroscopy of nitric oxide for sensing in high-enthalpy air (unpublished doctoral dissertation). Stanford University. Retrieved from https://searchworks.stanford.edu/view/13330825, (2019)

  51. C.A. Almodovar, W.W. Su, C.L. Strand, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 239, 106612 (2019)

    Article  Google Scholar 

  52. C.L. Strand, Y. Ding, S.E. Johnson, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 222, 122–129 (2019)

    Article  ADS  Google Scholar 

  53. Y. Ding, C.L. Strand, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 224, 396–402 (2019)

    Article  ADS  Google Scholar 

  54. Robin S.M. Chrystie, Ehson F. Nasir, Aamir Farooq, Proc. Combust. Inst. 35, 3757–3764 (2015)

    Article  Google Scholar 

  55. Ehson F. Nasir, Aamir Farooq, Opt. Express 26, 14601–14609 (2018)

    Article  ADS  Google Scholar 

  56. R.M. Spearrin, S. Li, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 35, 3645–3651 (2015)

    Article  Google Scholar 

  57. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 35, 3739–3747 (2015)

    Article  Google Scholar 

  58. G.P. Smith, Y. Tao, H. Wang, Foundational fuel chemistry model version 1.0 (FFCM-1), http://nanoenergy.stanford.edu/ffcm1, (2016)

  59. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 17, 1950–1957 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) with Dr. Chiping Li as technical monitor, through Grant FA9550-16-1-0195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Peng, W.Y., Wang, Y. et al. Two-color frequency-multiplexed IMS technique for gas thermometry at elevated pressures. Appl. Phys. B 126, 51 (2020). https://doi.org/10.1007/s00340-020-7396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-7396-4

Navigation