Skip to main content
Log in

Dosimetric characterisation and application to radiation biology of a kHz laser-driven electron beam

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-plasma accelerators can produce ultra-short electron bunches in the femtosecond to picosecond duration range, resulting in very high peak dose rates in comparison with clinical accelerators. This unique characteristic motivates their possible application to radiation biology studies to elucidate the effect of high peak dose rates and peculiar temporal structures on the biological response of living cells, which might improve the differential response between tumour and healthy tissues. Electron beams driven by kHz laser systems are an attractive option among laser-plasma accelerators since the high repetition rate can boost the mean dose rate and improve the stability of the delivered dose in comparison with J-class laser accelerators running at few Hz. In this work, we present the dosimetric characterisation of a kHz, low energy laser-driven electron source and preliminary results on in-vitro irradiation of cancer cells. A shot-to-shot dosimetry protocol enabled monitoring of the beam stability and the irradiation conditions for each cell sample. Results of survival assays on HCT116 colorectal cancer cells are in good agreement with previous findings reported in the literature and validate the robustness of the dosimetry and irradiation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Mirzaie, G. Zhang, S. Li, K. Gao, G. Li et al., Effect of injection-gas concentration on the electron beam quality from a laser-plasma accelerator. Phys. Plasmas 25(4), 043106 (2018)

    Article  ADS  Google Scholar 

  2. J. Faure, C. Rechatin, A.F. Lifschitz, X. Davoine, E. Lefebvre, V. Malka, Experiments and simulations of the colliding pulse injection of electrons in plasma wakefields. IEEE Trans. Plasma Sci. 36(4), 1751–1759 (2008)

    Article  ADS  Google Scholar 

  3. C. Thaury, E. Guillaume, A. Lifschitz, K.T. Phuoc, M. Hansson et al., Shock assisted ionization injection in laser-plasma accelerators. Sci. Rep. 5(1), 16310 (2015)

    Article  ADS  Google Scholar 

  4. E. Guillaume, A. Döpp, C. Thaury, A. Lifschitz, J.-P. Goddet et al., Physics of fully-loaded laser-plasma accelerators. Phys. Rev. Spec. Top. Accel. Beams 18(6), 061301 (2015)

    Article  ADS  Google Scholar 

  5. M.R. Ashraf, M. Rahman, R. Zhang, B.B. Williams, D.J. Gladstone et al., Dosimetry for FLASH radiotherapy: a review of tools and the role of radioluminescence and cherenkov emission. Front. Phys. 8, 328 (2020)

    Article  Google Scholar 

  6. S.D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther et al., Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 12(8), 085003 (2010)

    Article  ADS  Google Scholar 

  7. A. Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura et al., Development of laser-driven quasi-monoenergetic proton beam line for radiobiology. Nucl. Instrum. Methods Phys. Res. Sect. A 653(1), 189–192 (2011)

    Article  ADS  Google Scholar 

  8. F. Fiorini, D. Kirby, M. Borghesi, D. Doria, J.C.G. Jeynes et al., Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams. Phys. Med. Biol. 56(21), 6969–6982 (2011)

    Article  Google Scholar 

  9. D. Doria, K.F. Kakolee, S. Kar, S.K. Litt, F. Fiorini et al., Biological effectiveness on live cells of laser driven protons at dose rates exceeding 10 \(^{\rm 9}\) Gy/s. AIP Adv. 2(1), 011209 (2012)

    Article  ADS  Google Scholar 

  10. L. Laschinsky, M. Baumann, E. Beyreuther, W. Enghardt, M. Kaluza et al., Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. J. Radiat. Res. 53(3), 395–403 (2012)

    Article  ADS  Google Scholar 

  11. K. Zeil, M. Baumann, E. Beyreuther, T. Burris-Mog, T.E. Cowan et al., Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Appl. Phys. B 110(4), 437–444 (2013)

    Article  ADS  Google Scholar 

  12. M. Oppelt, M. Baumann, R. Bergmann, E. Beyreuther, K. Brüchner et al., Comparison study of in vivo dose response to laser-driven versus conventional electron beam. Radiat. Environ. Biophys. 54(2), 155–166 (2015)

    Article  Google Scholar 

  13. L. Pommarel, B. Vauzour, F. Mégnin-Chanet, E. Bayart, O. Delmas et al., Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments. Phys. Rev. Accel. Beams 20(3) (2017)

  14. S. Raschke, S. Spickermann, T. Toncian, M. Swantusch, J. Boeker et al., Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 6(1), 32441 (2016)

    Article  ADS  Google Scholar 

  15. E. Bayart, A. Flacco, O. Delmas, L. Pommarel, D. Levy et al., Fast dose fractionation using ultra-short laser accelerated proton pulses can increase cancer cell mortality, which relies on functional PARP1 protein. Sci. Rep. 9(1), 10132 (2019)

    Article  ADS  Google Scholar 

  16. V. Favaudon, L. Caplier, V. Monceau, F. Pouzoulet, M. Sayarath et al., Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6(245), 245ra93 (2014)

    Article  Google Scholar 

  17. P. Montay-Gruel, K. Petersson, M. Jaccard, G. Boivin, J.-F. Germond et al., Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 124(3), 365–369 (2017)

    Article  Google Scholar 

  18. M.-C. Vozenin, P. De Fornel, K. Petersson, V. Favaudon, M. Jaccard et al., The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 25(1), 35–42 (2019)

    Article  Google Scholar 

  19. J. Bourhis, P. Montay-Gruel, P.G. Jorge, C. Bailat, B. Petit et al., Clinical translation of FLASH radiotherapy: why and how? Radiother. Oncol. 139, 11–17 (2019)

    Article  Google Scholar 

  20. M.-C. Vozenin, J. Hendry, C. Limoli, Biological benefits of ultra-high dose rate flash radiotherapy: sleeping beauty awoken. Clin. Oncol. 31(7), 407–415 (2019)

    Article  Google Scholar 

  21. J.D. Wilson, E.M. Hammond, G.S. Higgins, K. Petersson, Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front. Oncol. 9, 1563 (2020)

    Article  Google Scholar 

  22. M.G. Andreassi, A. Borghini, S. Pulignani, F. Baffigi, L. Fulgentini et al., Radiobiological effectiveness of ultrashort laser-driven electron bunches: micronucleus frequency, telomere shortening and cell viability. Radiat. Res. 186(3), 245–253 (2016)

    Article  ADS  Google Scholar 

  23. S.M. Hooker, Developments in laser-driven plasma accelerators. Nat. Photon. 7(10), 775–782 (2013)

    Article  ADS  Google Scholar 

  24. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444(7120), 737–739 (2006)

    Article  ADS  Google Scholar 

  25. C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier-Michel et al., Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008)

    Article  ADS  Google Scholar 

  26. K. Schmid, A. Buck, C.M.S. Sears, J.M. Mikhailova, R. Tautz et al., Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Acceler. Beams 13(9), 091301 (2010)

    Article  ADS  Google Scholar 

  27. A. Buck, J. Wenz, J. Xu, K. Khrennikov, K. Schmid et al., Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110(18), 185006 (2013)

    Article  ADS  Google Scholar 

  28. P. Tomassini, S. De Nicola, L. Labate, P. Londrillo, R. Fedele et al., The resonant multi-pulse ionization injection. Phys. Plasmas 24(10), 103120 (2017)

    Article  ADS  Google Scholar 

  29. L. Labate, D. Palla, D. Panetta, F. Avella, F. Baffigi et al., Toward an effective use of laser-driven very high energy electrons for radiotherapy: feasibility assessment of multi-field and intensity modulation irradiation schemes. Sci. Rep. 10(1), 17307 (2020)

    Article  ADS  Google Scholar 

  30. Z.-H. He, B. Hou, J.A. Nees, J.H. Easter, J. Faure et al., High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New J. Phys. 15(5), 053016 (2013)

    Article  ADS  Google Scholar 

  31. F. Salehi, A.J. Goers, G.A. Hine, L. Feder, D. Kuk et al., MeV electron acceleration at 1 kHz with<10 mJ laser pulses. Opt. Lett. 42(2), 215 (2017)

    Article  ADS  Google Scholar 

  32. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle et al., Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11(5), 293–296 (2017)

    Article  ADS  Google Scholar 

  33. J. Faure, D. Gustas, D. Guénot, A. Vernier, F. Böhle et al., A review of recent progress on laser-plasma acceleration at kHz repetition rate. Plasma Phys. Control. Fusion 61(1), 014012 (2019)

    Article  ADS  Google Scholar 

  34. L. Rovige, J. Huijts, I. Andriyash, A. Vernier, V. Tomkus et al., Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator. Phys. Rev. Accel. Beams 23(9), 093401 (2020)

    Article  ADS  Google Scholar 

  35. L. Rovige, J. Huijts, I.A. Andriyash, A. Vernier, M. Ouillé et al., Optimization and stabilization of a kilohertz laser-plasma accelerator. Phys. Plasmas 28(3), 033105 (2021)

    Article  ADS  Google Scholar 

  36. L. Karsch, E. Beyreuther, T. Burris-Mog, S. Kraft, C. Richter et al., Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors: Dose rate dependence for different dosimeters an detectors. Med. Phys. 39(5), 2447–2455 (2012)

    Article  Google Scholar 

  37. M. Jaccard, K. Petersson, T. Buchillier, J.-F. Germond, M.T. Durán et al., High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 Gafchromic films. Med. Phys. 44(2), 725–735 (2017)

    Article  Google Scholar 

  38. M. Bazalova-Carter, M. Liu, B. Palma, M. Dunning, D. McCormick et al., Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom: Measurements and MC simulations of VHEE beams. Med. Phys. 42(4), 1606–1613 (2015)

    Article  Google Scholar 

  39. D. Gustas, D. Guénot, A. Vernier, S. Dutt, F. Böhle et al., High-charge relativistic electron bunches from a kHz laser-plasma accelerator. Phys. Rev. Acceler. Beams 21(1), 013401 (2018)

    Article  ADS  Google Scholar 

  40. S. Devic, N. Tomic, D. Lewis, Reference radiochromic film dosimetry: review of technical aspects. Phys. Med. 32(4), 541–556 (2016)

    Article  Google Scholar 

  41. L. Gizzi, L. Labate, F. Baffigi, F. Brandi, G. Bussolino et al., Laser-plasma acceleration of electrons for radiobiology and radiation sources. Nucl. Instrum. Methods Phys. Res., Sect. B 355, 241–245 (2015)

    Article  ADS  Google Scholar 

  42. E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky et al., Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons: Laser-accelerated electrons for cell irradiation experiments. Med. Phys. 37(4), 1392–1400 (2010)

    Article  Google Scholar 

  43. M. Nicolai, A. Sävert, M. Reuter, M. Schnell, J. Polz et al., Realizing a laser-driven electron source applicable for radiobiological tumor irradiation. Appl. Phys. B 116(3), 643–651 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cavallone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallone, M., Rovige, L., Huijts, J. et al. Dosimetric characterisation and application to radiation biology of a kHz laser-driven electron beam. Appl. Phys. B 127, 57 (2021). https://doi.org/10.1007/s00340-021-07610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07610-z

Navigation