Skip to main content
Log in

Restoration of Growth of Durum Wheat (Triticum durum var. waha) Under Saline Conditions Due to Inoculation with the Rhizosphere Bacterium Azospirillum brasilense NH and Extracts of the Marine Alga Ulva lactuca

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Inoculation with the rhizosphere bacterium Azospirillum brasilense NH, originally isolated from salt-affected soil in northern Algeria, greatly enhanced growth of durum wheat (Triticum durum var. waha) under saline soil conditions. Important plant parameters like the rate of germination, stem height, spike length, dry weight of roots and shoots, chlorophyll a and b content, proline and total sugar contents, 1000-seed weight, seed number per spike, and weight of seeds per spike were measured. At salt stress conditions (160 and 200 mM NaCl) A. brasilense NH restored almost completely vegetative growth and seed production. The combination with extracts of the marine alga Ulva lactuca resulted in even more improved salt tolerance of durum wheat. Proline and total sugar accumulation, a sign of physiological plant stress under inhibitory salt conditions, was reduced in plants inoculated with A. brasilense NH with and without addition of algal extracts. Inoculation with the salt-sensitive A. brasilense strain Sp7 could not restore salt-affected plant growth at 200 mM NaCl. Furthermore, it could be demonstrated by fluorescence in situ hybridization and confocal laser scanning microscopy that A. brasilense NH is able to colonize roots of durum wheat endophytically under salt-stressed conditions. Thus, the salt-tolerant rhizobacterium A. brasilense NH could effectively provide alone or in combination with extracts of U. lactuca a promising solution to overcome salt inhibition which is a major threat hindering productive wheat cultivation in arid saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Ghaffar BA, El-Shourbagy MN, Basha EM (1998) Responses of NaCl stressed wheat to IAA. In: Proceedings of the 6th Egyptian botanical conference, 24–26 November 1998, Cairo University, Giza, Egypt. WJAS/AEJAES 6:79–88

  • Alvey S, Yang CH, Buerkert D, Crowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biol Fert Soils 37:73–82

    Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Ashraf MY, Khan MA, Maqvi SSM (1991) Effect of salinity on seedling growth and solutes accumulation in two wheat genotypes. Rachis 10:30–31

    Google Scholar 

  • Aßmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  Google Scholar 

  • Bakker EP, Booth IR, Dinnbier U, Epstein W, Gajewska A (1987) Evidence for multiple K+ export systems in Escherichia coli. J Bacteriol 169:3743–3749

    CAS  PubMed  Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:433–439

    Article  Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res Microbiol 144:69–75

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum–plant relationships, environmental and physiological advances. Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology. Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–607

    CAS  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fert Soils 32:265–272

    Article  CAS  Google Scholar 

  • Bengston C, Klockare B, Klockare R, Larsson S, Sudquist C (1978) The after-effect of water stress on chlorophyll formation during greening and the level of abscisic acid and proline in dark growth wheat seedlings. Plant Physiol 43:205–212

    Article  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Brenda C, Fermin TS, Hahm JA, Radinsky RJ, Kratochvil JE, Hall Y, Martin L (2005) Effect of proline and glutamine on the functional properties of wheat dough in winter wheat varieties. J Food Sci 70:273–278

    Google Scholar 

  • Brown CM, Dilworth MJ (1975) Ammonia assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 122:61–67

    Google Scholar 

  • Carpita NC (1985) Tensile strength of cell walls of living cells. Plant Physiol 79:485–488

    Article  PubMed  CAS  Google Scholar 

  • Cayla M (1995) Découvrez les algues: propriétés, applications, recettes. Chairon, Paris, pp 23–25

    Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N-fixation on growth, symbiotic performance and nitrogen assimilation in Faba bean (Vicia faba L.) under salt stress. Plant Soil 172:289–297

    Article  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (1998) Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Can J Bot 76:238–244

    Article  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Amber T, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Shimon B, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:1–9

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan. Sci World J 5:501–509

    CAS  Google Scholar 

  • El-Haddad EHM, O’Leary JW (1994) Effect of salinity and K/Na ratio of irrigation water on growth and solute content of Atriplex amnicola and Sorghum bicolor. Irrigation Sci 14:127–133

    Article  Google Scholar 

  • Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Lett 39:73–78

    Article  CAS  Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferreira MCB, Fernandes MS, Döbereiner J (1987) Role of Azospirillum brasilense nitrate reductase in nitrate assimilation by wheat plants. Biol Fert Soils 4:47–53

    CAS  Google Scholar 

  • Francois LE, Maas EV, Donovan TJ, Youngs VL (1986) Effect of salinity on grain yield and quality, vegetative growth, and germination of semi-dwarf and durum wheat. Agron J 78:1053–1058

    CAS  Google Scholar 

  • Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:274–325

    Google Scholar 

  • Gallé Á, Csiszár J, Tari I, Erdei L (2002) Changes in water and chlorophyll fluorescence parameters under osmotic stress in wheat cultivars. Acta Biol Szeged 46:85–86

    Google Scholar 

  • Ghoul M (1990) L’halotolérance de E. coli. Effet des osmoprotecteurs naturels. Doctorate thesis, Université of Rennes 1, Rennes, France

  • Ghoul M, Minet J, Bernard T, Dupray E, Cormier M (1995) Marine macroalgae as a source for osmoprotection for Escherichia coli. Microb Ecol 30:171–181

    Article  Google Scholar 

  • Gill PK, Sharma AD, Singh P, Bhullar SS (2002) Osmotic stress-induced changes in germination, growth and soluble sugar content of Sorghum bicolour (L.) Moench seeds. Bulg J Plant Physiol 28(3–4):12–25

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M (1996) Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J Plant Nutr 19:389–396

    Article  CAS  Google Scholar 

  • Hartmann A, Baldani JI (2006) The genus Azospirillum. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5: Proteobacteria: alpha and beta subclasses (chap 3.1.5). Springer, New York, pp 115–140

  • Hartmann A, Singh M, Klingmüller W (1983) Isolation and characterization of Azospirillum mutants excreting high amounts of indole acetic acid. Can J Microbiol 29:916–923

    CAS  Google Scholar 

  • Iqbal R, Mahmood A (1992) Structural studies on root nodules of Leucaena leucocephola with particular reference to the infection process. Pak J Bot 24:142–152

    Google Scholar 

  • Jofré E, Fischer S, Rivarola V, Balegno H, Mori G (1998) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–422

    Article  Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1987) Yield response of spring wheat (Triticum aestivum) to inoculation with Azospirillum brasilense under field conditions. Biol Fert Soils 4:27–35

    Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Kogut M, Russell NJ (1987) Life at the limits: considerations on how bacteria can grow at extremes of temperature and pressure or with high concentrations of ions and solutes. Sci Prog 71:381–400

    CAS  PubMed  Google Scholar 

  • Konnova SA, Makarov OE, Skvortsov IM, Ignatov VV (1994) Isolation, fractionation and some properties of polysaccharides produced in a bound form by Azospirillum brasilense and their possible involvement in Azospirillum–wheat root interactions. FEMS Microbiol Lett 118:93–99

    Article  CAS  Google Scholar 

  • Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the north Atlantic Ocean. Appl Environ Microbiol 70:4129–4135

    Article  CAS  PubMed  Google Scholar 

  • Marshall KC (1975) Clay mineralogy in relation to survival of soil bacteria. Annu Rev Phytopathol 13:357–373

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Morel JL, Habib L, Plantureux S, Guckert A (1991) Influence of maize root mucilage on soil aggregate stability. Plant Soil 136:111–119

    Article  Google Scholar 

  • Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7:354–360

    Article  CAS  Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:26–35

    Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez C (1994) Agronomic applications of Azospirillum: an evaluation of 20 years world-wide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. ASM News 63:366–370

    Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassan FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5):1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526–1531

    Article  CAS  PubMed  Google Scholar 

  • Pichereau V, Pocard J-A, Hamelin J, Blanco C, Bernard T (1998) Differential effects of dimethylsulfoniopropionate, dimethylsulfonioacetate, and other S-methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Appl Environ Microbiol 64:1420–1429

    CAS  PubMed  Google Scholar 

  • Qureshi RH, Ahmed R, Ilyas M, Aslam Z (1980) Screening of wheat (Triticum aestivum L.) for salt tolerance. Pak J Agric Sci 27:9–26

    Google Scholar 

  • Rashid A (1986) Mechanism of salt tolerance in wheat (Triticum aestivum L.). PhD thesis, University of Agriculture, Faisalabad, Pakistan

  • Reddy PS, Veeranjaneyulu K (1991) Proline metabolism in senescing leaves of hosgram (Macrotyloma uniflorum lam.). J Physiol 137:381–383

    CAS  Google Scholar 

  • Reed RH (1983) Measurement and osmotic significance of ß-dimethylsulphoniopropionate in marine macroalgae. Mar Biol Lett 34:173–181

    Google Scholar 

  • Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361

    Article  Google Scholar 

  • Rengasamy P, Chittleborough D, Helyar K (2003) Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 257:249–260

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rodrigues O, Didonet AD, Gouveia JA, Soares C (2000) Nitrogen translocation in wheat inoculated with Azospirillum and fertilized with nitrogen. Pesqui Agropecu Bras 35:1473–1481

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Schmid M, Hartmann A (2003) In situ localization and PGPR effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34:261–279

    Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 33:314–319

    Google Scholar 

  • Saqib M, Akhtar J, Qureshi RH (2004) Pot study on wheat growth in saline and waterlogged compacted soil: I. Grain yield and yield components. Soil Till Res 77:169–177

    Article  Google Scholar 

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studies with strain-specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  • Schulz B, Boyle C, Sieber N (2006) Microbial root endophytes. Springer, New York

    Book  Google Scholar 

  • Sepaskhah AR, Bazrafshan-Jahromi AR, Shirmohammadi-Aliakbarkhani Z (2006) Development and evaluation of a model for yield production of wheat, maize and sugarbeet under water and salt stresses. Biosyst Eng 93:139–152

    Article  Google Scholar 

  • Sharma RC, Gupta NK, Gupta S, Hasegawa H (2005) Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotype. Photosynthesis 43:609–613

    Article  Google Scholar 

  • STAT-ITCF (1992) Logiciels et manuels d’utilisation. ITCF, Paris. STATSOFT (2004) Statistica, version 7.0. StatSoft, Inc, Tulsa, OK

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol 24:83–97

    Article  CAS  PubMed  Google Scholar 

  • Termaat A, Passioura JB, Munns R (1985) Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiol 77:869–872

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367

    Article  CAS  PubMed  Google Scholar 

  • Vande Broek A, Lambrecht M, Vanderleyden J (1998) Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144:2599–2606

    Article  Google Scholar 

  • Xiong L, Zhu J-K (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly appreciate the excellent technical assistance with the FISH analysis of Mrs. Angelika Schulz (Helmholtz Zentrum München, Germany) in the laboratory experiments. Furthermore, many thanks go to Benyahia Fateh (INRA Company) for the great help in the performance of the pot and field experiments in Bejaïa and to Dr. M. Sahnoune for the plant analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Hartmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabti, E., Sahnoune, M., Ghoul, M. et al. Restoration of Growth of Durum Wheat (Triticum durum var. waha) Under Saline Conditions Due to Inoculation with the Rhizosphere Bacterium Azospirillum brasilense NH and Extracts of the Marine Alga Ulva lactuca . J Plant Growth Regul 29, 6–22 (2010). https://doi.org/10.1007/s00344-009-9107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-009-9107-6

Keywords

Navigation