Skip to main content
Log in

Regulatory Factors of Leaf Senescence are Affected in Arabidopsis Plants Overexpressing the Histone Methyltransferase SUVH2

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Leaf senescence involves extensive reprogramming of gene expression effectuating the complex biochemical and structural changes that occur during the last stage of leaf development. In a large-scale transcriptomic approach in Arabidopsis thaliana (L.) Heynh., using qRT-PCR, gene expression for more than 380 transcriptional regulators was shown to be regulated in a senescence-specific manner. Overexpression of SUVH2 histone methyltransferase, which was previously reported by Ay and others (Plant J 58:333–346, 2009) to delay leaf senescence, affected gene expression of about 50 % of these senescence-related regulatory factors (SRRFs), whereas the other half was regulated during senescence similar to wild type. Thereby, the senescence-related transcription factor families AP2-EREBP, C2H2, NAC, and WRKY are affected most notably. This suggests a direct or indirect locus-specific mode of SUVH2 action. Interestingly, we found that 45 of the identified SRRFs possess an ERF-associated amphiphilic repression motif, indicating that EAR motif-mediated transcriptional repression could be a principal mechanism within regulation of senescence. Furthermore, about 30 % of the SRRFs are predicted as putative targets of the ELONGATED HYPOCOTYL5 (HY5) bZIP transcription factor. This suggests that HY5-dependent processes play an important role within the regulatory network of leaf senescence. Moreover, these processes seem to be specifically affected in plants overexpressing SUVH2. Our results give new insights into the complex regulatory network of senescence-associated processes and the specific involvement of chromatin alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvarez-Venegaz R, Al Abdallat A, Guo M, Alfano JR, Avramova Z (2007) Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2:106–113

    Article  Google Scholar 

  • Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic reprogramming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Article  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshhaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 controls is own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Met 57:289–300

    Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y-S, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beyon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and-shoot-specific genes. Plant J 38:366–379

    Article  CAS  PubMed  Google Scholar 

  • Delessert C, Kazan K, Wilson I, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogen-related genes in Arabidopsis. Plant J 43:745–757

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp M-J, Hajouj T, Nesher MFO, Yariv I, Dor C, Bassani M (2003) Large scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82(6):529–537

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531–2543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing HC, Dijkwel PP (2003) Aging in plants: conserved strategies and novel pathways. Plant Biol 5:455–464

    Article  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152:1109–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH, Hwang D, Nam HG (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Krupinska K (2006) Fate and activities of plastids during leaf senescence. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, Dordrecht, pp 433–449

    Chapter  Google Scholar 

  • Krupinska K, Humbeck K (2004) Photosynthesis and chloroplast breakdown. In: Noodén LD (ed) Plant cell death processes. Academic Press, San Diego, pp 169–187

    Chapter  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker U (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  CAS  PubMed  Google Scholar 

  • Matallana-Ramirez LP, Rauf M, Farage-Barhom S, Dortay H, Xue GP, Dröge-Laser W, Lers A, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUKLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis. Mol Plant 6(5):1432–1452

    Article  CAS  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224:556–568

    Article  CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Rauf M, Arif M, Dortay H, Matallana-Ramirez LP, Waters MT, Nam HG, Lim PO, Mueller-Roeber B, Balazadeh S (2013) ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription. EMBO Rep 14:382–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Method Enzymol 411:134–193

    Article  CAS  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie AR (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem. doi:10.1016/j.plaphy.2013.02.001

    PubMed  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P (1989) Experimentelle Pflanzenphysiologie, vol 2. Springer, Berlin

    Book  Google Scholar 

  • Shin DH, Choi MG, Kim K, Bang G, Cho M, Choi SB, Choi G, Park YI (2013) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu W, Grain D, Gourrierec JL, Harscoët E, Berger A, Jauvion V, Scagnelli A, Berger N, Bidzinski P, Kelemen Z, Salsac F, Baudry A, Routaboul M, Lepiniec L, Dubos C (2013) Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytol 198:59–70

    Article  CAS  PubMed  Google Scholar 

  • Zentgraf U, Laun T, Miao Y (2010) The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur J Cell Biol 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gonzalez A, Zhao M, Payne T, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Max Planck Institute in Golm-Potsdam for the opportunity to perform the expression analysis with the TF platform. Furthermore, we thank Michael Röser for his assistance with the statistical analysis of the TF platform data. The project was supported by the European Regional Development Fund of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Humbeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary DS 1 Expression raw data of all 1,870 analyzed regulatory genes (XLSX 3829 kb)

Supplementary DS 2 Significant regulated genes in wild-type and the SUVH2-oe line (XLSX 355 kb)

Supplementary DS 3 Direct comparison of regulated genes between wild-type and the SUVH2-oe line (XLSX 244 kb)

Supplementary DS 4 Clusters 1–5 assigned genes from k-mean clustering (XLSX 282 kb)

Supplementary DS 5 qRT-PCR primers of TF platform and candidate genes analyzed in senescence kinetics (XLS 484 kb)

344_2013_9384_MOESM6_ESM.jpg

Supplementary Fig. 1 Localization of SUVH2 in wild-type and suvh2 mutant plants. Immunostaining with a SUVH2-specific antibody (α-SUVH2) of wild-type (WT) and suvh2 mutant interphase nuclei. The suvh2 T-DNA insertion line GABI-Kat 516A07 was obtained from the Nottingham Arabidopsis Stock Centre (NASC). Homozygous plants were used for analysis. Scale bars = 5 μm (JPEG 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ay, N., Raum, U., Balazadeh, S. et al. Regulatory Factors of Leaf Senescence are Affected in Arabidopsis Plants Overexpressing the Histone Methyltransferase SUVH2. J Plant Growth Regul 33, 119–136 (2014). https://doi.org/10.1007/s00344-013-9384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-013-9384-y

Keywords

Navigation