Skip to main content
Log in

Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An investigation was carried out to understand the mechanism(s) underlying enhanced Fe or Zn uptake in low Fe–Zn accumulator wheat genotype 4HPYT-414, due to inoculation of siderophore-producing and zinc-solubilizing endophytes—Arthrobacter sulfonivorans DS-68 and Arthrobacter sp. DS-179. Root anatomical features, using transmission electron microscopy (TEM), qualitative and quantitative aspects of production of organic acids and sugars in root exudates, and expression of TaZIP genes were analysed to relate to endophyte-mediated higher concentrations of Fe and Zn in the roots and shoots of wheat plants. TEM studies revealed that the endodermis, cortical region, root hair extension, xylem and xylem vessels, pericycle and vascular bundles were more pronounced and thicker in inoculated treatments, as compared to control. The organic acid profile of root exudates revealed five types of organic acids, with citric acid being predominant. Inoculation of A. sulfonivorans and Arthrobacter sp. brought about 5- and eightfold increases in the amounts of acids, respectively, as compared to control, particularly citric acid, succinic acid and acetic acid. Among the four TaZIP genes targeted, expression was achieved only for TaZIP3 and TaZIP7 genes, which showed 1–2 fold increases in the inoculated treatments. The results clearly indicated that the endophyte-mediated overexpression of TaZIP3 and TaZIP7 genes in roots and shoots, and the observed anatomical and exudate changes were acting synergistically in facilitating higher Fe and Zn translocation in roots and shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Ai-Qing Z, Qiong-Li B, Xiao-Hong T, Xin-Chun L, Gale William J (2011) Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L.). J Environ Biol 32:235–239

    Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174(1):3–11

    Article  CAS  Google Scholar 

  • Chatzistathis T, Therios I, Alifragis D (2009) Differential uptake, distribution within tissues, and use efficiency of manganese, iron, and zinc by olive cultivars kothreiki and koroneiki. Hort Sci 44(7):1994–1999

    Google Scholar 

  • Chen B, Shen J, Zhang X, Pan F, Yang X, Feng Y (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS ONE 9(9):e106826

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9(3):322–330

    Article  CAS  PubMed  Google Scholar 

  • da Silva Lima L, Olivares FL, De Oliveira RR, Vega MRG, Aguiar NO, Canellas LP (2014) Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids. Chem Biol Technol Agric 1:23. doi:10.1186/s40538-014-0023-z

    Article  Google Scholar 

  • de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342(1–2):97–104

    Article  CAS  Google Scholar 

  • Delaplace P, Delory BM, Baudson C, de Cazenave MMS, Spaepen S, Varin S, Brostaux Y, du Jardin P (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol 15(1):1

    Article  CAS  Google Scholar 

  • Desai A, Archana G (2011) Role of siderophores in crop improvement. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin, pp 109–139

    Chapter  Google Scholar 

  • Dong B, Rengel Z, Graham RD (1995) Root morphology of wheat genotypes differing in zinc efficiency. J Plant Nutr 18(12):2761–2773

    Article  CAS  Google Scholar 

  • Durmaz E, Coruh C, Dinler G, Grusak MA, Peleg Z, Saranga Y, Fahima T, Yazici A, Ozturk L, Cakmak I (2011) Expression and cellular localization of ZIP1 transporter under zinc deficiency in wild emmer wheat. Plant Mol Biol Rep 29(3):582–596

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Huang CY, Langridge P (2007) A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J Exp Bot 58(11):2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Glińska S, Gapińska M, Michlewska S, Skiba E, Kubicki J (2016) Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma 253(2):367–377

    Article  PubMed  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169(1):66–75

    Article  CAS  PubMed  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95(12):7220–7224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. BBA 1823(9):1521–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56(422):3207–3214

    Article  CAS  PubMed  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant 5(1):27–42

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205(1):25–44

    Article  CAS  Google Scholar 

  • Khalid S, Asghar HN, Akhtar MJ, Aslam A, Zahir ZA (2015) Biofortification of iron in chickpea by plant growth-promoting rhizobacteria. Pak J Bot 47:1191–1194

    CAS  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Ranathunge K, Steudle E (2009) Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration. New Phytol 184(4):909–917

    Article  CAS  PubMed  Google Scholar 

  • Kramer D, Römheld V, Landsberg E, Marschner H (1980) Induction of transfer-cell formation by iron deficiency in the root epidermis of Helianthus annuus L. Planta 147(4):335–339

    Article  CAS  PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272

    Article  PubMed  Google Scholar 

  • Krithika S, Balachandar D (2016) Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front Plant Sci 7:446

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuang Y, Wen D, Zhong C, Zhou G (2002) Root exudates and their roles in phytoremediation. Acta Phytoecol Sinica 27(5):709–717

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98(4):693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XF, Zuo FH, Ling GZ, Li YY, Yu YX, Yang PQ, Tang XL (2009) Secretion of citrate from roots in response to aluminum and low phosphorus stresses in Stylosanthes. Plant Soil 325(1–2):219–229

    Article  CAS  Google Scholar 

  • Li W, Ye Z, Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326(1–2):453–467

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20(2):207–217

    Article  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Am J Bot 55(5):493–512

    Article  Google Scholar 

  • Malinowski D, Zuo H, Belesky D, Alloush G (2004) Evidence for copper binding by extracellular root exudates of tall fescue but not perennial ryegrass infected with Neotyphodium spp. endophytes. Plant Soil 267(1–2):1–12

    Article  CAS  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Momayezi M, Zaharah A, Hanafi M (2012) The effects of cation ratios on root lamella suberization in rice (Oryza sativa L.) with contrasting salt tolerance. Int J Agron 8:769196

    Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208(3):373–382

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Bidyarani N, Babu S, Hossain F, Shivay YS, Nain L (2015) Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food Agric 1(1):998507

    Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6:815–823

    Article  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900. doi:10.1007/s13213-011-0211-z

    Article  CAS  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126. doi:10.1016/j.ejsobi.2012.01.005

    Article  CAS  Google Scholar 

  • Rêgo MCF, Ilkiu-Borges F, Filippi MCCd, Gonçalves LA, Silva GBd (2014) Morphoanatomical and biochemical changes in the roots of rice plants induced by plant growth-promoting microorganisms. J Bot. doi:10.1155/2014/818797

  • Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. doi:10.1101/pdb.prot5439

    Google Scholar 

  • Shao J, Xu Z, Zhang N, Shen Q, Zhang R (2015) Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils 51(3):321–330

    Article  CAS  Google Scholar 

  • Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359

    Article  CAS  PubMed  Google Scholar 

  • Singh D (2016) Enhancement of uptake and translocation of micronutrients in wheat by using endophytes. IARI Post Graduate School, New Delhi, Ph.D. thesis

  • Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil. doi:10.1007/s11104-017-3189-x

    Google Scholar 

  • Sirohi G, Upadhyay A, Srivastava PS, Srivastava S (2015) PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J Soil Sci Plant Nutr 15(1):202–216

    Google Scholar 

  • Tariq M, Hameed S, Malik KA, Hafeez FY (2007) Plant root associated bacteria for zinc mobilization in rice. Pak J Bot 39(1):245

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Prigent-Combaret C (2014) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Google Scholar 

  • Wang Y, Yang X, Zhang X, Dong L, Zhang J, Wei Y, Feng Y, Lu L (2014) Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H. J Agric Food Chem 62(8):1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Wei-Hong X, Huai L, Qi-Fu M, Xiong ZT (2007) Root exudates, rhizosphere Zn fractions and Zn accumulation of rye grass at different soil Zn levels. Pedosphere 17(3):389–396

    Article  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20(3–4):379–392

    Article  CAS  PubMed  Google Scholar 

  • Xu YG, Wang BS, Yu JJ, Ao GM, Zhao Q (2010) Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Funct Plant Biol 37(3):194–205

    Article  CAS  Google Scholar 

  • Zahid M (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Shen J, Jing J, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity. In: Xu J, Huang P (eds) Molecular environmental soil science at the interfaces in the earth’s critical zone. Springer, Berlin, pp 52–54

    Chapter  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) Continuous secretion of organic acids is related to aluminium resistance during relatively long-term exposure to aluminium stress. Physiol Plant 103(2):209–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICAR—Indian Agricultural Research Institute and Indian Council of Agricultural Research (ICAR), New Delhi for providing financial support through NASF project. The Division of Microbiology, ICAR-IARI, New Delhi and ICAR-NRCPB are gratefully acknowledged for the facilities provided, during the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2017_9716_MOESM1_ESM.tif

Supplementry Fig. 1. Chromatogram illustrating organic acids of wheat root exudates by HPLC: (A) Control; (B) Arthrobacter sulfonivorans DS-68, (C) Arthrobacter sp. DS-179 (TIF 363 KB)

344_2017_9716_MOESM2_ESM.tif

Supplementry Fig. 2. Chromatogram of sugars of root exudates by HPLC: (A) Control; (B) Arthrobacter sulfonivorans DS-68, (C) Arthrobacter sp. DS-179 (TIF 366 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Geat, N., Rajawat, M.V.S. et al. Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat. J Plant Growth Regul 37, 174–182 (2018). https://doi.org/10.1007/s00344-017-9716-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9716-4

Keywords

Navigation