Skip to main content
Log in

Castasterone and Citric Acid Supplementation Alleviates Cadmium Toxicity by Modifying Antioxidants and Organic Acids in Brassica juncea

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids are known to manage various stresses including heavy metals in plants and castasterone is a bioactive form of brassinosteroids. Citric acid, a known metal chelator which is an intermediate of tricarboxylic cycle, is involved in various environmental adaptations. The present study was conducted to evaluate the synergistic role of citric acid and castasterone on various physiological and biochemical responses in Brassica juncea seedlings under cadmium stress. B. juncea seedlings were subjected to two levels of cadmium (0 and 0.6 mM) and citric acid (0 and 0.6 mM), and four levels of castasterone (0, 0.01, 1, and 100 nM). Exposure of cadmium induced phytotoxicity by elevating hydrogen peroxide (H2O2) and superoxide anion (\({\text{O}}_{2}^{{. - }}\)) generation, decreasing photosynthetic pigment concentration, altering total carbohydrate content, and inducing stomatal closure. Seed priming with castasterone (at highest level) along with citric acid was most effective in ameliorating cadmium-induced toxicity which was manifested via reduced H2O2 and \({\text{O}}_{2}^{{. - }}\) levels by 30.71 and 12.12%, respectively. The photosynthetic pigments, namely chlorophyll and carotenoid content, were improved by 47.17 and 34.06%, respectively, whereas total carbohydrates and polyphenolic contents were increased by 32.59 and 42.44%, respectively. Additionally, endogenous low-molecular weight organic acids were altered in response to cadmium toxicity, which were also increased with the castasterone and citric acid treatments. The results suggest that binary treatment of citric acid and castasterone may be more effective than individual treatments in alleviating cadmium-induced physiological damage through antioxidants and organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal M, Deepak SS (2003) Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environ Pollut 121:189–197

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64:199–213

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi N, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77: 36–44

    Article  CAS  Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1):e0114571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abd Allah EF, Hashem A, Sarwat M, Gucel S (2016) Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (Czern & Cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul 35(4):936–950

    Article  CAS  Google Scholar 

  • Andresen E, Kupper H (2013) Cadmium toxicity in plants. In: Sigel A, Sigel RKP (eds) Cadmium: from toxicity to essentiality. Metal science in life sciences. Springer, New York, pp 395–413

    Chapter  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Photophenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. CRC Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Baccouch S, Chaoui A, Ferjani EE (1998) Nickel toxicity: effects on growth and metabolism of maize. J Plant Nutr 21:577–588

    Article  CAS  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Chaffai R, Tekitek A, Ferjani E (2006) A comparative study on the organic acid content and exudation in maize (Zea mays L.) seedlings under conditions of copper and cadmium stress. Asian J Plant Sci 5:598–606

    Article  CAS  Google Scholar 

  • Chen MC, Wang MK, Chiu CY, Huang PM, King HB (2001) Determination of low molecular weight dicarboxylic acids and organic functional groups in rhizosphere and bulk soils of Tsuga and Yushania in a temperate rain forest. Plant Soil 231:37–44

    Article  CAS  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran, LS.P (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Yves G (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42:233–239

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznika MS, Groppaa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Zaier H, Baioui R, Sghaier S, Lucchini G, Sacchi GA, Lutts S, Abdelly C (2013) Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 90:1449–1454

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants probing the role of sulphur. Plant Signal Behav 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Agric Agri Food Can 54:143–155

    CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant 128:134–143

    Article  CAS  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) In: Whistler RL, Be Miller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York, p 420

  • Hodoshima H, Enomoto Y, Shoji K, Shimada H, Goto F, Yoshihara T (2007) Differential regulation of cadmium-inducible expression of iron-deficiency-responsive genes in tobacco and barley. Physiol Plant 129:622–634

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hu L, Zhang Z, Xiang Z, Yang Z (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Front Plant Sci 7:179

    PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Masood A, Nazar R, Syeed S, Khan NA (2010) Photosynthesis, growth and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in cadmium tolerance. Agric Sci China 9:519–527

    Article  CAS  Google Scholar 

  • Izbiańska K, Arasimowicz-Jelonek M, Deckert J (2014) Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotoxicol Environ Saf 110:61–67

    Article  PubMed  Google Scholar 

  • Jana S, Choudhuri M (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aqua Bot 12:345–354.

    Article  Google Scholar 

  • John R, Ahmad, Gadgil K, Sharma S (2009) Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Intl J Agron Plant Prod 3:65–76

    CAS  Google Scholar 

  • Joo SH, Jang MS, Kim MK, Lee JE, Kim SK (2015) Biosynthetic relationship between C 28-brassinosteroids and C 29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry 111:84–90

    Article  CAS  PubMed  Google Scholar 

  • Kapoor D, Kaur S, Bhardwaj R (2014) Physiological and biochemical changes in Brassica juncea plants under cd-induced stress. BioMed Res Int 2014:726070

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Walia A, Bhardwaj R (2017) Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L. Environ Sci Pollut Res 24(1):685–700. doi:10.1007/s11356-016-7864-x

    Article  CAS  Google Scholar 

  • Kutrowska A, Szelag M (2014) Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals. Acta Physiol Plant 36:1957–1968

    Article  CAS  Google Scholar 

  • Li H, Liu Y, Zeng G, Zhou L, Wang X, Wang Y, Wang C, Hu X, Xu W (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids. J Environ Sci 26(12):2508–2516

    Article  Google Scholar 

  • López-Bucio J, Nieto-Jacobo MF, Ramíre-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  PubMed  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Peng HY, Li TQ (2013) Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. J Zhejiang Univ Sci B 14:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, free amino acid composition of chlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  • Mancinelli AL (1984) Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiol 75:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez-Garcia B, Fernandez-Recamales MA, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot 2012:936950

    Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Rijeka, pp 23–44

    Google Scholar 

  • Mourato MP, Moreira IN, Leitao I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. Int J Mol Sci 16:17975–17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant 29:57–62

    Article  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Article  Google Scholar 

  • Pal S, Zhao J, Khan A, Yadav NS, Batushansky A, Barak S, Rewald B, Fait A, Lazarovitch N, Rachmilevitch S (2016) Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Sci Rep 6:39321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:1–6

    Article  Google Scholar 

  • Poonam, Kaur R, Bhardwaj R, Sirhindi G (2015) Castasterone regulated polyphenolic metabolism and photosynthetic system in Brassica juncea plants under copper stress. J Pharmacogn Phytochem 4:282–289

    Google Scholar 

  • Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Rabino I, Mancinelli AL (1986) Light, temperature and anthocyanin production. Plant Physiol 81:922–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770. doi:10.1007/s10535-008-0149-6

    Article  CAS  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2011) Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol Plant 33:1723–1735

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Thukral AK, Bhardwaj R (2016a) Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Ind J Plant Physiol 21:70–75

    Article  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016b) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    PubMed  PubMed Central  Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2007) Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ 373:157–165

    Article  CAS  PubMed  Google Scholar 

  • Sun YL, Hong SK (2011) Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin.). Plant Growth Regul 64:129–139

    Article  CAS  Google Scholar 

  • Tran TA, Popova LP (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37:1–13

    CAS  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67

    Article  Google Scholar 

  • Vazquez MN, Guerrero YR, González LM, de la Noval WT (2013) Brassinosteroids and plant responses to heavy metal stress. An Overview. Open J Metal 3:34–41

    Article  Google Scholar 

  • Verma S, Dubey RS (2001) Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–123

    Article  CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ 37:2036–2050

    Article  CAS  PubMed  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia for funding this research group No. (RGP-199). Research fellowship to the first author was provided by the Department of Science and Technology, Govt. of India under the INSPIRE scheme. The sophisticated instruments used in the present were purchased under UGC and DST-FIST program of GOI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renu Bhardwaj or Parvaiz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Yadav, P., Thukral, A.K. et al. Castasterone and Citric Acid Supplementation Alleviates Cadmium Toxicity by Modifying Antioxidants and Organic Acids in Brassica juncea . J Plant Growth Regul 37, 286–299 (2018). https://doi.org/10.1007/s00344-017-9727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9727-1

Keywords

Navigation