Skip to main content

Advertisement

Log in

Cascades of Ionic and Molecular Networks Involved in Expression of Genes Underpin Salinity Tolerance in Cotton

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salt stress is a severe threat to agricultural productivity in many parts of the world. Cotton (Gossypium hirsutum) is an economically important fiber crop globally, and is regarded as a model crop for salinity tolerance research. Although cotton is a relatively salt-tolerant plant, its growth and development, as well as fiber yield and quality, are greatly reduced by severe salt conditions. Salinity tolerance studies in cotton have focused on finding the key molecular genetic processes activated in response to salt stress, for breeding salt-tolerant cotton genotypes. In response to salt stress, cotton exhibits a variety of changes at the molecular, biochemical, and physiological levels. Photosynthetic pathways and metabolism play pivotal roles in redox balance and ion homeostasis. Several stress signaling pathways, for example, abscisic acid, salt overly sensitive (SOS), mitogen-activated protein kinase (MAPK), reactive oxygen species (ROS), and membrane-bound Na+/H+ antiporters, all participate in salinity tolerance. The activation and regulation of specific genes drive this physiological and biochemical plasticity. In cotton, the roles of several transcription factors (for example, WRKY, ZFP, NAC, DREB, bZIP, and ERF) in salt stress tolerance have been well documented. We also highlight the potential areas for future investigation to elucidate the key pathways for effective breeding of salt-tolerant cotton genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abid MA, Malik W, Yasmeen A, Qayyum A, Zhang R, Liang C, Guo S, Ashraf J (2016) Mode of inheritance for biochemical traits in genetically engineered cotton under water stress. AoB Plants 8:plw008

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy M, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54:102–123

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad S (2000) Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res 66:115–127

    Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bibi Z, Khan N, Latif A, Khan M, Manyuan G, Niu Y, Khan Q, Khan I, Shaheen S, Sadozai G (2016) Salt tolerance in upland cotton genotypes to NaCl salinity at early growth stages. J Anim Plant Sci 26:766–775

    CAS  Google Scholar 

  • Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Erli N, Hao D, Liang Z, Yue F, Wangzhen G (2014) Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton. Crop J 8:7–101

    Google Scholar 

  • Chen W, Hou Z, Wu L, Liang Y, Wei C (2010) Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 326:61–73

    Article  CAS  Google Scholar 

  • Chen X, Gao W, Zhang J, Zhang X, Lin Z (2013) Linkage mapping and expression analysis of miRNAs and their target genes during fiber development in cotton. BMC Genom 14:706–712

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Dou L, Zhang X, Pang C, Song M, Wei H, Fan S, Yu S (2014) Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genom 289:1103–1121

    Article  CAS  Google Scholar 

  • Gaxiola R.A, Palmgren MG, Schumacher K (2007) Plant proton pumps. Febs Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Ho LH, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147:595–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 15:151–160

    Google Scholar 

  • Gomez J, Jimenez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130

    Article  CAS  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC, Banks SW, Marney MM (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503

    Article  CAS  PubMed  Google Scholar 

  • Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and-independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246:10–18

    Article  CAS  PubMed  Google Scholar 

  • Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  CAS  PubMed  Google Scholar 

  • He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Liu JY (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta 1759:263–269

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Huang GQ, Li W, Zhou W, Zhang JM, Li DD, Gong SY, Li XB (2013) Seven cotton genes encoding putative NAC domain proteins are preferentially expressed in roots and in responses to abiotic stress during root development. Plant Growth Regul 71:101–112

    Article  CAS  Google Scholar 

  • Hurst HC (1993) Transcription factors. 1: bZIP proteins. Protein Profile 1:123–168

    Google Scholar 

  • Isamah G (2004) ATPase, peroxidase and lipoxygenase activity during post-harvest deterioration of cassava (Manihot esculenta Crantz) root tubers. Int Biodeter Biodegradation 54:319–323

    Article  CAS  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, DrögeLaser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Wang C, Wang F, Liu S, Li G, Guo X (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 10(3):e0120646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin LG, Liu JY (2008) Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum). Plant Physiol Biochem 46:46–53

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Huang B, Li H, Liu J (2009) Expression profiles and transactivation analysis of a novel ethylene-responsive transcription factor gene GhERF5 from cotton. Prog Nat Sci 19:563–572

    Article  CAS  Google Scholar 

  • Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485–495

    CAS  PubMed  Google Scholar 

  • Johnson S, Doherty S, Croy R (2003) Biphasic superoxide generation in potato tubers. A self-amplifying response to stress. Plant Physiol 131:1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7:e40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidi EO, Saiz J (1997). Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings? Plant Soil 190:67–75

    Article  CAS  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Li G, Tai FJ, Zheng Y, Luo J, Gong SY, Zhang ZT, Li XB (2010) Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol 74:437–445

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ji W, Ningxin W, Xingqi G, Zheng G (2015a) GhWRKY44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. Plant Cell Tissue Organ Cult 121:127–140

    Article  CAS  Google Scholar 

  • Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C (2015b) Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genom 16:976–997

    Article  CAS  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:1–14

    Article  CAS  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, HuangJ, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44,GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  CAS  PubMed  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9:e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Longxing H, Jibiao F, Erick A, Khaldun ABM, Yong Z, Liang C (2017) Cotton GhERF38 gene is involved in plant response to salt/drought and ABA. Ecotoxicology 26:841–854

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKersie BD, Lesheim Y (2013) Stress and stress coping in cultivated plants. Springer, Heidelberg

    Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176:352–359

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Ann Rev Plant Biol 61:443–462

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, Van DNM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Ann Rev Biochem 70:313–340

    Article  CAS  PubMed  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, Van Der Winden J, Matzke M, Matzke AJ (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X (2011) Expression of an Arabidopsis vacuolar H+pyrophosphatase gene (AVP1) in cotton improves droughtand salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci. doi:10.3389/fpls.2016.01123

    Article  PubMed  Google Scholar 

  • Porta H, Rueda-Benitez P, Campos F, Colmenero-Flores JM, Colorado JM, Carmona MJ, Covarrubias AA, Rocha-Sosa M (1999) Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant Cell Physiol 40:850–858

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Qiao ZX, Huang B, Liu JY (2008) Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum). Biochim Biophys Acta 1779:122–127

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Gu Q, Kuppu S, Sun L, Zhu X, Mishra N, Hu R, Shen G, Zhang J, Zhang Y (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7:345–355

    Article  Google Scholar 

  • Qin LX, Nie XY, Hu R, Li G, Xu WL, Li XB. (2016) Phosphorylation of serine residue modulates cotton Di19-1 and Di19-2 activities for responding to high salinity stress and abscisic acid signaling. Sci Rep. doi:10.1038/srep20371

    Article  PubMed Central  PubMed  Google Scholar 

  • Reinhardt D, Rost T (1995) Primary and lateral root development of dark and light grown cotton seedlings under salinity stress. Bot Acta 108:457–465

    Article  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sairam R, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher MA, Goodman RH, Brennan RG (2000) The structure of a CREB bZIP· somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J Biol Chem 275:35242–35247

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Jia W, Xiaoyun Q, Rongbin H, Sundaram K, Dick A, Eduardo B, Roberto G, Paxton P, Hong Z (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33:167–177

    Article  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Ann Rev Plant Biol 42:145–188

    Article  CAS  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11

    Article  PubMed  CAS  Google Scholar 

  • Staiger D, Brown JW (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas A (2002) Plant cell signal transduction the emerging phenotype. Plant Cell 14:S3–S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Huang Z, Chen Q, Zhang Z, Zhang H, Wu Y, Huang D, Huang R (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183–192

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011) Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. J Integr Plant Biol 53:212–231

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Guoqing L, Yuqiong H, Huiming G, Yan G, Jun Z, Hongmei C (2017) ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta. doi:10.1007/s00425-017-2704-x

    Article  PubMed Central  PubMed  Google Scholar 

  • Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012) Genome-wide analysis of bZIP-encoding genes in maize. DNA Res 19:463–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212

    Article  CAS  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Haihong J, Xiaobo C, Lili H, Hailong A, Xingqi G (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55(12):2060–2076

    Article  CAS  PubMed  Google Scholar 

  • Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013a) Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1153–1521

    Article  CAS  Google Scholar 

  • Yang YG, Lv WT, Li MJ, Wang B, Sun DM, Deng X (2013b) Maize membrane-bound transcription factor Zmbzip17 Is a key regulator in the crosstalk of ER quality control and ABA signaling. Plant Cell Physiol 54:2020–2033

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y, Xiang CB (2015) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:1–13

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98:12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wan Q, Ye W, Lv Y, Wu H, Zhang T (2013) Genome-wide analysis of small RNA and novel microRNA discovery during fiber and seed initial development in Gossypium hirsutum L. PLoS ONE 8:e69743. doi:10.1371/journal.pone.0069743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Shufen L, Shuming Y, Like W, Wangzhen G (2015) Overexpression of a cotton annexin gene, GhAnn1, enhances drought and salt stress tolerance in transgenic cotton. Plant Mol Biol 87:47–67

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Zhang XJ, Li PH, Zhao YX, Zhang H (2006) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 17:341–353

    Article  CAS  Google Scholar 

  • Zhou L, Wang NN, Gong SY, Lu R, Li Y, Li XB (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang NN, Kong L, Gong SY, Li Y, Li XB (2014) Molecular characterization of 26 cotton WRKY genes that are expressed differentially in tissues and are induced in seedlings under high salinity and osmotic stress. Plant Cell Tissue Organ Cult 119:141–156

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    CAS  Google Scholar 

  • Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE, Adams MW, Zhu Y, Shi H, Yun DJ, Hasegawa PM (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27:5214–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grant from the National Natural Science Foundation of China (No. 31601349), and Grant from the Ministry of Agriculture of China (Grant Nos. 2016ZX08005-004, 2016ZX08009003-003-004).

Author information

Authors and Affiliations

Authors

Contributions

MAA, CL, and RZ conceived and designed the experiments; MAA, WM, ZM, TZ, ZhM, and JA performed data analysis and interpretation; MAA, CL, WM, SG, and RZ wrote the paper.

Corresponding authors

Correspondence to Sandui Guo or Rui Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

344_2017_9744_MOESM1_ESM.xlsx

Supplementary Table 1.Detailed features of transcription factors and expression values under salt stress treatment (XLSX 44 KB)

344_2017_9744_MOESM2_ESM.pptx

Supplementary File S1. Exon/intron structures of each salt tolerant transcription factor in upland cotton. Exons and introns are represented by yellow bold lines and black lines, respectively. The sizes of exons and introns can be determined using the scale at bottom (PPTX 505 KB)

344_2017_9744_MOESM3_ESM.pptx

Supplementary File S2. Schematic description of the conserved motifs in the WRKY, ZFP, NAC, DREB, ERF and bZIP proteins from upland cotton. Each motif is represented by a colored box. The black lines between colored boxes represent the non-conserved protein sequences (PPTX 1181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, M.A., Liang, C., Malik, W. et al. Cascades of Ionic and Molecular Networks Involved in Expression of Genes Underpin Salinity Tolerance in Cotton. J Plant Growth Regul 37, 668–679 (2018). https://doi.org/10.1007/s00344-017-9744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9744-0

Keywords

Navigation