Skip to main content
Log in

Microbial Volatile Organic Compounds Produced by Bacillus amyloliquefaciens GB03 Ameliorate the Effects of Salt Stress in Mentha piperita Principally Through Acetoin Emission

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We investigated the effects of microbial volatile organic compounds (mVOC) emitted by Bacillus amyloliquefaciens GB03 on Mentha piperita growing under different levels of NaCl stress, by evaluating their growth-promoting potential and ability to increase salt tolerance effects. Plants were exposed to bacterial VOCs without having any physical contact with the rhizobacteria. The VOCs emitted by the rhizobacteria (mVOCs) were analyzed using SPME fibers. An increase in the level of salt concentration led to a decrease in plant growth. However, these negative effects of salinity were inhibited in the plants exposed to mVOCs. Plants grown in a saline media and exposed to GB03 VOCs had significantly better morphological characteristics and higher total chlorophyll content compared to controls. The level of endogenous jasmonic acid (JA), salicylic acid, and abscisic acid increased in salt-stressed plants compared to controls. The level of JA did not show any change in plants grown in a saline media either exposed to mVOCs or not. In contrast, the amount of salicylic acid increased remarkably in salt-stressed plants exposed to mVOCs compared to controls (salt-stressed plants not exposed to mVOCs), but the levels of abscisic acid decreased in salt-stressed plants exposed to mVOCs. The chromatographic analyses of the mVOCs produced by salt-stressed GB03 bacteria were similar, regardless of the concentration of salt in the media where the bacteria were grown, although it was observed that the relative percentage of acetoin increased with salt concentration. After determining that acetoin was the main VOCs compound, we exposed plants to acetoin, which demonstrated that acetoin caused similar effects on plants grown under salt stress conditions as those exposed to GB03 mVOCs. Based on these results, the use of mVOCs from PGPR is suggested as a useful technological innovation to facilitate the growth of M. piperita in salt-stressed environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

JA:

Jasmonic acid

MS:

Murashige and Skoog medium

PGPR:

Plant-growth-promoting rhizobacteria

SA:

Salicylic acid

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ann MN, Cho YE, Ryu HJ, Kim HT, Park KS (2013) Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. Korean J Pestic Sci 17:388–393. https://doi.org/10.7585/kjps.2013.17.4.388

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  CAS  PubMed  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A, Yadav A, Kalra A (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60

    Article  CAS  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Cappellari LR, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E (2015) Anatomical, morphological, and phytochemical effects of inoculation withplant growth- promoting rhizobacteria on peppermint (Mentha piperita). J Chem Ecol 41:149–158. https://doi.org/10.1007/s10886-015-0549-y

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabdopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choi SK, Jeong H, Kloepper JW, Ryu CM (2014) Genome sequence of Bacillus amyloliquefaciens GB03, an active ingredient of the first commercial biological control product. Gen Announc 2:01092–01098

    Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochem 67:2262–2268

    Article  CAS  Google Scholar 

  • Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando VCD, Schroeder DF (2016) Role of ABA in Arabidopsis salt, drought, and desiccation tolerance. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants - recent advances and future perspectives. InTech, Rijeka- Croatia

    Google Scholar 

  • Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75

    Article  CAS  PubMed  Google Scholar 

  • Fincheira P, Venthur H, Mutis A, Parada M, Quiroz A (2016) Growth promotion of Lactuca sativa in response to volatile organic compounds emitted from diverse bacterial species. Microbiol Res 193:39–47

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Article  CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113:7–18

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Khana AL, Waqasa M, You YH, Kim JH, Kim JG et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Khan MI, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Meeting FB Jr (ed) Soil microbial ecology-applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kuan KB, Othman R, Rahim AK, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11:e0152478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ledger T, Rojas S, Timmermann T, Pinedo I, Poupin MJ, Garrido T, Richter P, Tamayo J, Donoso R (2016) Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol 7:1838

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Jia H, Wang J (2014) cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Rep 33:447-459. https://doi.org/10.1007/s00299-013-1545-8

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Yang H, Wu X, Guo K, Li J (2015) Some aspects of salinity responses in peppermint (Mentha × piperita L.) to NaCl treatment. Protoplasma 252:885–899

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Zhang H (2015) The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci 6:774

    PubMed  PubMed Central  Google Scholar 

  • Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ahmed HB (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? a study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS 20(3):180-190

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 5:473–497

    Article  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper J (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi B, Stojanović-Radić Z, Matejić J, Sharopov F, Antolak H, Kręgiel D, Sen S, Sharifi-Rad M, Acharya K, Sharifi-Rad R, Martorell M, Sureda A, Martins N, Sharifi-Rad J (2018) Plants of genus Mentha: from farm to food factory. Plants 7(3):70. https://doi.org/10.3390/plants7030070

    Article  CAS  PubMed Central  Google Scholar 

  • Santoro M, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1077–1082

    Article  CAS  Google Scholar 

  • Santoro MV, Bogino PC, Nocelli N, del Cappellari L, Giordano WF, Banchio E (2016) Analysis of plant growth-promoting effects of fluorescent pseudomonas strains isolated from mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1085

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian K, Charest C (1997) Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasseling. Mycorrhiza 7:25

    Article  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016) Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67:4209–4220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, dit Frey NF, Leung J (2008) An update on abscisic acid signalling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Wenke K, Weise T, Warnke R, Valverde C, Wanke D, Kai M, Pichuella B (2012) Bacterial volatiles mediating information between bacteria and plants. In: Witzany G (ed) Biocommunication, signaling and communication in plants. Springer, Berlin, pp 327–347

    Chapter  Google Scholar 

  • Wintermans PC, Bakker PA, Pieterse CM (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Zhiming R, Zhang X, Xu M, Xu Z, Yang ST (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamchari V, Payton P, Sun Y, Grimson M, Frag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact 23:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, Duan CG, Zhu X, Zhu JK (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7(328):ra53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants from the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT). EB is a Career Member of CONICET. LC has fellowships from CONICET. The authors are grateful to Dr. Paul Hobson, native speaker, for editorial assistance.

Funding

This study was supported by Grants from the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto, the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), MinCyT Córdoba, the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, and financial support to EB from the Georg Forster Research Fellowship of the Alexander von Humboldt Foundation. EB is a Career Member of CONICET. LC and MVS received fellowships from CONICET- Min CyT.

Author information

Authors and Affiliations

Authors

Contributions

LC performed the experiments, and EB designed the research and analyzed the data. EB and LC wrote the manuscript. All the authors read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Erika Banchio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappellari, L.d.R., Banchio, E. Microbial Volatile Organic Compounds Produced by Bacillus amyloliquefaciens GB03 Ameliorate the Effects of Salt Stress in Mentha piperita Principally Through Acetoin Emission. J Plant Growth Regul 39, 764–775 (2020). https://doi.org/10.1007/s00344-019-10020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10020-3

Keywords

Navigation