Skip to main content

Advertisement

Log in

Eco-physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rapeseed yield parameters have been altered due to the increased exposure to abiotic stresses. The changing climatic conditions have reduced biomass production and seed yield, which ultimately affect the success of rapeseed crops. The severity and ability of abiotic stresses to act in tandem are a growing concern for agriculture producers across the globe. Rapeseed is one of the most vital cultivars in the world, serving as a major player in edible oil production. Abiotic stress conditions impose various effects on plant metabolism associated with growth stages, soil water storage capacity and plant physiological aspects. Modern agriculture aims to increased plant productivity to ensure global food security for the future. This can be achieved using quality seed, appropriate agricultural practices, measuring pest reduction techniques and understanding crop production challenges. Important tools, including conventional breeding and biotechnological approaches, can be employed to develop abiotic stress tolerance rapeseed. This review highlights the physiological and biochemical responses of rapeseed to abiotic stresses. The review also addresses conventional and modern stress mitigation strategies for the development of climate-smart rapeseed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: USDA Foreign Agricultural Service (FAS), European Union (EU). EU-28 Oilseeds and Products Annual 2019-USDA GAIN reports. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Oilseeds%20and%20Products%20Annual_Vienna_EU-28_3-28-2019.pdf

Fig. 3

Source: USDA Foreign Agricultural Service (FAS), World Agricultural Production, May 2019. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

Fig. 4

Similar content being viewed by others

References

  • Ahmad G, Jan A, Arif M, Jan M, Khattak R (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B 8:731–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    Article  CAS  Google Scholar 

  • Ahmadi M, Bahrani MJ (2009) Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. Amerrcane Eurasian J Agric Environ Sci 5:755–761

    CAS  Google Scholar 

  • Angadi S, Cutforth H, Miller P, McConkey B, Entz M, Brandt S, Volkmar K (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80:693–701

    Article  Google Scholar 

  • Azimzadeh S, Azimzadeh S (2013) Effect of nitroxin biofertilizer and nitrogen chemical fertilizer on yield and yield components of rapeseed (Brassica napus L.). Int J Agric Crop Sci 6:1284–1291

    Google Scholar 

  • AOF (2015) Australian oilseeds federation crop reports. www.australianoilseeds.com/oilseeds_industry/crop_report_assets

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Fujita M (2017) Relative tolerance of different species of Brassica to cadmium toxicity: coordinated role of antioxidant defense and glyoxalase systems. Plant Omics 10:107

    Article  CAS  Google Scholar 

  • Ali B, Tao Q, Zhou Y, Gill RA, Ali S, Rafiq MT, Xu L, Zhou W (2013) 5-Aminolevolinic acid mitigates the cadmium-induced changes in Brassica napus as revealed by the biochemical and ultra-structural evaluation of roots. Ecotoxicol Environ Saf 92:271–280

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Gill R, Mwamba T, Zhang N, Lv M, Ul Hassan Z, Islam F, Zhou W (2018) Differential cobalt-induced effects on plant growth, ultrastructural modifications, and antioxidative response among four Brassica napus (L) cultivars. Int J Environ Sci Technol 15:2685–2700

    Article  CAS  Google Scholar 

  • Angelova V, Ivanova R, Todorov J, Ivanov K (2017) Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. Environ Prot Ecol 18:468–478

    CAS  Google Scholar 

  • Akram NA, IqbalM MA, AshrafM A-Q, Shafiq S (2018) Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress. Protoplasma 255:163–174

    Article  CAS  PubMed  Google Scholar 

  • Bal SK, Minhas PS (2017) Atmospheric stressors: challenges and coping strategies. Abiotic stress management for resilient agriculture. Springer, Singapore, pp 9–50

    Google Scholar 

  • Bancroft I et al (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762

    Article  CAS  PubMed  Google Scholar 

  • Babula-Skowro´nska D, Ludwików A, Cie´sla A et al (2015) Involvement of genes encoding ABI1 protein phosphatases in the response of Brassica napus L. to drought stress. Plant Mol Biol 88:445–457

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bueckert RA, Clarke JM (2013) Review: annual crop adaptation to abiotic stress on the Canadian prairies: six case studies. Can J Plant Sci 93:375–385

    Article  Google Scholar 

  • Benincasa P, Pace R, Quinet M, Lutts S (2013) Effect of salinity and priming on seedling growth in rapeseed (Brassica napus var oleifera Del.). Acta Sci Agron 35:479–486

    Article  CAS  Google Scholar 

  • Beszterda M, Nogala-Kałucka M (2019) Current research developments on the processing and improving the nutritional quality of rapeseed (Brassica napus L.): a review. Eur J Lipid Sci Technol. https://doi.org/10.1002/EJLT.201800045

    Article  Google Scholar 

  • Bhattacharyya R et al (2015) Soil degradation in India: challenges and potential solutions. Sustainability 7:3528–3570

    Article  Google Scholar 

  • Billard V, Ourry A, Maillard A, Garnica M, Coquet L et al (2014) Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation andmodification of the expression of chloroplastic proteins. PLoS ONE 9:e109889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brunetto G et al (2016) Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 162:293–307

    Article  CAS  PubMed  Google Scholar 

  • Bybordi A, Ebrahimian E (2011) Effect of salinity stress on activity of enzymes involved in nitrogen and phosphorous metabolism case study: canola (Brassica napus L.). Asian J Agric Res 5:208–214

    CAS  Google Scholar 

  • Ceccarelli S et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya R (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Sairam RK, Bhaduri D (2016) Effects of different levels of soil salinity on yield attributes accumulation of nitrogen, and micronutrients in Brassica Spp. J Plant Nutr 39:1026–1037

    Article  CAS  Google Scholar 

  • Chai L et al (2019) Rapid identification of enhanced drought and salt tolerances in Arabidopsis conferred by BnBADH1 gene. Int J Agric Biol 22:633–638

    CAS  Google Scholar 

  • Chalhoub B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi P, Ghatak A, Weckwerth W (2016) Pollen proteomics: from stress physiology to developmental priming. Plant Reprod 29:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B et al (2016) Identification, cloning and characterization of R2R3-MYB gene family in canola (Brassica napus L.) identify a novel member modulating ROS accumulation and hypersensitive-like cell death. DNA Res 23:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Ren F, Zhong H, Jiang W, Li X (2009) Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochim Biophys Sin 42:154–164

    Article  CAS  Google Scholar 

  • Chen L, Ren F, Zhou L, Wang Q-Q, Zhong H, Li X-B (2012) The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot 63:6211–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhong H, Ren F, Guo Q-Q, Hu X-P, Li X-B (2011) A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Rep 30:463–471

    Article  PubMed  CAS  Google Scholar 

  • Deng Z et al (2005) A novel ABA-dependent dehydrin ERD10 gene from Brassica napus. DNA Seq 16:28–35

    Article  CAS  PubMed  Google Scholar 

  • Di F et al (2018) Genome-wide analysis of the PYL gene family and identification of PYL genes that respond to abiotic stress in Brassica napus. Genes 9:156

    Article  PubMed Central  CAS  Google Scholar 

  • Dolatabadi N, Toorchi M, Valizadeh M, Bandehagh A (2019) The proteome response of salt-sensitive rapeseed (Brassica napus L.) genotype to salt stress. Not Bot Horti Agrobot Cluj Napoca 47:17–23

    Article  CAS  Google Scholar 

  • Dordas CA, Sioulas C (2008) Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind Crop Prod 27:75–85

    Article  CAS  Google Scholar 

  • Du C, Hu K, Xian S, Liu C, Fan J, Tu J, Fu T (2016) Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.). Mol Genet Genomics 291:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Downing WL, Mauxion F, Fauvarque MO et al (1992) A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J 2:685–693

    CAS  PubMed  Google Scholar 

  • D’Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice J-C, Trouverie J (2014) Evidence for proteomic and metabolic adaptations associated to alterations of seed yield and quality in sulphurlimited Brassica napus L. Mol Cell Proteom 13:1165–1183

    Article  CAS  Google Scholar 

  • Ebrahimian E, Bybordi A, Seyyedi SM (2017) How nitrogen and zinc levels affect seed yield, quality, and nutrient uptake of canola irrigated with saline and ultra-saline water. Commun Soil Sci Plant Anal 48:345–355

    Article  CAS  Google Scholar 

  • El-Habbasha S, Taha M (2011) Integration between nitrogen fertilizer levels and bio-inoculants and its effect on canola (Brassica napus L.) plants. Am-Eurasian J Agric Environ Sci 11:786–791

    CAS  Google Scholar 

  • Elferjani R, Soolanayakanahally R (2018) Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front Plant Sci 9:1224

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskandari H, Alizadeh-Amraie A (2017) Comparison of the ability of wheat, clover and rapeseed in phytoremediation of cadmium from soils for reducing heavy metal stress. Environ Stress Crop Sci. https://doi.org/10.22077/escs.2017.589

    Article  Google Scholar 

  • FAS (2019) World Agricultural Production, May 2019. https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  • FAOSTAT (2017) Rapeseed production, 2014; Crops/Regions/World list/Production Quantity (pick lists). https://www.fao.org/faostat/en/#data. Accessed Dec 22, 2017

  • FAS EU (2019) EU-28 Oilseeds and Products Annual 2019-USDA GAIN reports. https://gain.fas.usda.gov/Recent%2520GAIN%2520Publications/Oilseeds%2520and%2520Products%2520Annual_Vienna_EU-28_3-28-2019.pdf

  • Farhoudi R, Modhej A, Afrous A (2011) Effect of salt stress on physiological and morphological parameters of rapeseed cultivars. Adv Environ Biol 5:2501–2508

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24:21050–21064

    Article  CAS  Google Scholar 

  • Friedt W, Tu J, Fu T (2018) Academic and economic importance of Brassica napus rapeseed. The Brassica napus genome. Springer, Cham, pp 1–20

    Google Scholar 

  • Fu D-H et al (2016) Research progress and strategies for multifunctional rapeseed: a case study of China. J Integr Agric 15:1673–1684

    Article  Google Scholar 

  • Gao M-J, Allard G, Byass L, Flanagan AM, Singh J (2002) Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol Biol 49:459–471

    Article  CAS  PubMed  Google Scholar 

  • Ghobadi M, Bakhshandeh M, Fathi G, Gharineh MH, AlamieSaid K, Naderi A, Ghobadi ME (2006) Short and long periods of water stress during different growth stages of canola (Brassica napus L.): effect on yield, yield components, seed oil and protein contents. J Agron 5:336e341

    Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Mahli S, Karamanos R (2012) Sulfur management for rapeseed. Field Crop Res 128:119–128

    Article  Google Scholar 

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Sanavy S (2012) Effect of nitrogen compounds and tricyclazole on some biochemical and morphological characteristics of waterlogged-canola. Inter Res J Appl Basic Sci 3:77–84

    CAS  Google Scholar 

  • Hajiebrahimi A, Owji H, Hemmati S (2017) Genome-wide identification, functional prediction, and evolutionary analysis of the R2R3-MYB superfamily in Brassica napus. Genome 60:797–814

    Article  CAS  PubMed  Google Scholar 

  • Han H, Wang Q, He L-y, Sheng X-f (2018) Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria. J Hazard Mater 353:280–289

    Article  CAS  PubMed  Google Scholar 

  • Hashem HA, Hassanein RA, Bekheta MA, El-Kady FA (2013) Protective role of selenium in canola (Brassica napus L.) plant subjected to salt stress. Egypt J Exp Biol (Bot) 9:199–211

    Google Scholar 

  • Hawkins G, Nykiforuk C, Johnson-Flanagan A, Boothe J (1996) Inheritance and expression patterns of BN28, a low temperature induced gene in Brassica napus, throughout the Brassicaceae. Genome 39:704–710

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020a) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Khan MIR, Al Mahmud J, Alam MM, Fujita M (2020b) Regulation of reactive oxygen species metabolism and glyoxalase systems by exogenous osmolytes confers thermotolerance in Brassica napus. Gesunde Pflanz 72:3–16

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020c) Selenium in plants: boon or bane? Environ Exp Bot 178:104170

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Element Res 149:248–261

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017a) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Gill SS, Alharby HF, Razafindrabe BH, Fujita M (2017b) Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. Front Plant Sci 8:115

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee T, Khan M, Fujita M (2018) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. South Afr J Bot 115:50–57

    Article  CAS  Google Scholar 

  • Hemmati M, Delkhosh B, Rad AHS, Mohammadi GN (2019) Effect of the application of foliar selenium on canola cultivars as influenced by different irrigation regimes. J Agric Sci 25:309–318

    Google Scholar 

  • Hossain MF, Shenggang P, Meiyang D, Zhaowen M, Karbo MB, Bano A, Xiangru T (2015) Photosynthesis and antioxidant response to winter rapeseed (Brassica napus L.) as affected by boron. Pak J Bot 47:675–684

    CAS  Google Scholar 

  • He Y et al (2016) Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PLoS ONE 11:e0157558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q et al (2017) Rapeseed research and production in China. Crop J 5:127–135

    Article  Google Scholar 

  • Hu H, Xiong L (2014) Genetic engineering and breeding of droughte resistant crops. Ann Rev Plant Biol 65:715–741

    Article  CAS  Google Scholar 

  • Jaglo KR et al (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2020) Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Not Bot Hortic Agrobot Cluj-Napoca. https://doi.org/10.15835/nbha48311766

    Article  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol 30:679–684

    Article  CAS  PubMed  Google Scholar 

  • Ji MG, Park HJ, Cha J-Y, Kim JA, Shin G-I, Jeong SY, Lee ES, Yun D-J, Lee SY, Kim W-Y (2020) Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance. Plant Physiol Biochem 147:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kahrizi D, Alaahvarand T (2012) Estimation and interrelationships of genetic variability parameters of some morpho-phenological traits in spring rapeseed (Brassica napus L.). Asian J Biol Sci 5:358–364

    Article  Google Scholar 

  • Kamran M, Malik Z, Parveen A, Huang L, Riaz M, Bashir S, Mustafa A, Abbasi GH, Xue B, Ali U (2020) Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39:266–281

    Article  CAS  Google Scholar 

  • Kaur S, Francki MG, Forster JW (2012) Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. Plant Biotechnol J 10:125–138

    Article  CAS  PubMed  Google Scholar 

  • Kaur L, Sardana V, Sharma P (2018) Effect of sowing dates and nitrogen application on growth and productivity of canola oilseed rape (Brassica napus). J Oilseed Brassica 9:114–121

    Google Scholar 

  • Khattak MJKFA, Khan MA (2000) Influence of sowing methods on the productivity of canola grown in saline field. Pak J Biol Sci 3:687–691

    Article  Google Scholar 

  • King GJ, Baten A (2018) Brassica napus genomic resources. The Brassica napus genome. Springer, Cham, pp 233–244

    Chapter  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol 107:915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan P, Ramakrishnan B, Reddy KR, Reddy V (2011) High-temperature effects on rice growth, yield, and grain quality. Advances in agronomy. Elsevier, Amsterdam, pp 87–206

    Google Scholar 

  • Kong F, Mao S, Du K, Wu M, Zhou X, Chu C, Wang Y (2011) Comparative proteomics analysis of OsNAS1 transgenic Brassica napus under salt stress. Chin Sci Bull 56:2343–2350

    Article  CAS  Google Scholar 

  • LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res 37:4181–4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larden A, Triboi-Blondel A (1994) Freezing injury to ovules, pollen and seeds in winter rape. J Exp Bot 45:1177–1181

    Article  Google Scholar 

  • Liang Y et al (2016) Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Sci Rep 6:24265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S-X, Gao N, Li X, Xi X (2018) Toxic effects of antimony on the seed germination and seedlings accumulation in Raphanus sativus L. radish and Brassica napus L. Mol Biol Rep 45:2609–2614

    Article  CAS  PubMed  Google Scholar 

  • Lipper L et al (2014) Climate-smart agriculture for food security. Nat Clim Change 4:1068

    Article  Google Scholar 

  • Li J, Zeng L, Cheng Y, Lu G, Fu G, Ma H, Liu Q, Zhang X, Zou X, Li C (2018) Exogenous melatonin alleviates damage from drought stress in Brassica napus L. (rapeseed) seedlings. Acta Physiol Plant 40:43

    Article  CAS  Google Scholar 

  • Liu S et al (2016) A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet 129:1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Long Y et al (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J et al (2017) BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci 8:44

    PubMed  PubMed Central  Google Scholar 

  • Luo T, Xian M, Zhang C, Zhang C, Hu L, Xu Z (2019) Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis. Sci Rep 9:1–16

    Google Scholar 

  • Lv Y, Fu S, Chen S, Zhang W, Qi C (2016) Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop J 4:199–211

    Article  Google Scholar 

  • Ma B, Herath A (2016) Timing and rates of nitrogen fertiliser application on seed yield, quality and nitrogen-use efficiency of canola. Crop Past Sci 67:167–180

    Article  CAS  Google Scholar 

  • Ma BL, Zhao H, Zheng ZM, Caldwell C, Mills A, Earl H, Vanasse A, Scott P, Smith DL (2016) Optimizing seeding dates and rates for canola production in the humid eastern Canadian agroecosystems. Agron J 108:1869–1879

    Article  Google Scholar 

  • Malhi S, Gill K (2007) Interactive effects of N and S fertilizers on canola yield and seed quality on S-deficient Gray Luvisol soils in northeastern Saskatchewan. Can J Plant Sci 87:211–222

    Article  CAS  Google Scholar 

  • Men S, Chen H, Chen S, Zheng S, Shen X, Wang C, Yang Z, Liu D (2020) Effects of supplemental nitrogen application on physiological characteristics, dry matter and nitrogen accumulation of winter rapeseed (Brassica napus L.) under waterlogging stress. Sci Rep 10:1–10

    Article  CAS  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153:225–236

    Article  Google Scholar 

  • Mansoori I (2012) Response of canola to nitrogen and sulfur fertilizers. Int J Agric Crop Sci 4:28–33

    Google Scholar 

  • Matthaus B, Özcan MM, Al Juhaimi F (2016) Some rape/canola seed oils: fatty acid composition and tocopherols. Zeitschrift für Naturforschung C 71:73–77

    Article  CAS  Google Scholar 

  • McVetty PBE, Duncan RW (2015) Canola, rapeseed, and mustard: for biofuels and bioproducts. Industrial crops. Handbook of plant breeding. Springer, New York, pp 133–156

    Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46:241–244

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi G, Amiri F (2010) The effect of priming on seed performance of canola (Brassica napus L.) under drought stress. Am-Eurasian J Agric Environ Sci 9:202–207

    Google Scholar 

  • Morton MJ, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97:148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muneer S, Lee B, Kim KY, Park SH, Zhang Q (2014) Involvement of sulphur nutrition in modulating iron deficiency responses in photosynthetic organelles of oilseed rape (Brassica napus L.). Photosynth Res 119:319–329

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Namvar A, Khandan T (2013) Response of wheat to mineral nitrogen fertilizer and biofertilizer (Azotobacter sp. and Azospirillum sp.) inoculation under different levels of weed interference. Ekologija 59:85–94

    Article  CAS  Google Scholar 

  • Namvar A, Khandan T (2015) Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: impact on water relations, cell membrane stability, chlorophyll content and yield. Arch Agron Soil Sci 61:1137–1149

    Article  CAS  Google Scholar 

  • Naseri R, Mirzaei A, Emami T, Vafa P (2012) Effect of salinity on germination stage of rapeseed cultivars (Brassica napus L). Int J Agric Crop Sci 4:918–922

    Google Scholar 

  • Nelson RJ, Naylor RL, Jahn MM (2004) The role of genomics research in improvement of" orphan" crops. Crop Sci 44:1901

    Article  Google Scholar 

  • Nouman W, Basra SMA, Yasmeen A, Gull T, Hussain SB, Zubair M, Gul R (2014) Seed priming improves the emergence potential, growth and antioxidant system of Moringa oleifera under saline conditions. Plant Growth Reg 73:267–278

    Article  CAS  Google Scholar 

  • OECD (2012) Organisation for Economic Co-operation and Development. Consensus document on the biology of the brassica crops (Brassica spp.). Series on Harmonisation of Regulatory oversight of Biotechnology, No 54, OECD, Paris, p. 142

  • Park YS et al (1993) Generation of expressed sequence tags of random root cDNA clones of Brassica napus by single-run partial sequencing. Plant Physiol 103:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perata P, Armstrong W, Voesenek LA (2011) Plants and flooding stress. New Phytol 190:269–273

    Article  PubMed  Google Scholar 

  • Purty RS, Kumar G, Singla-Pareek SL, Pareek A (2008) Towards salinity tolerance in Brassica: an overview. Physiol Mol Biol Plant 14:39–49

    Article  CAS  Google Scholar 

  • Qian B, Jing Q, Bélanger G, Shang J, Huffman T, Liu J, Hoogenboom G (2018) Simulated canola yield responses to climate change and adaptation in Canada. Agron J 110:133–146

    Article  CAS  Google Scholar 

  • Rahaman M, Mamidi S, Rahman M (2017) Association mapping of agronomic traits of canola (Brassica napus L.) subject to heat stress under field conditions. Aust J Crop Sci 11:1094

    Article  CAS  Google Scholar 

  • Rakow G (2004) Species origin and economic importance of Brassica. In: Pua EC, Douglas CJ (eds) Brassica. Springer, Berlin, pp 3–11

    Chapter  Google Scholar 

  • Raman H et al (2016) Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ 39:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019a) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Raza A, Mehmood SS, Ashraf F, Khan RSA (2019b) Genetic diversity analysis of Brassica species using PCR-based SSR markers. Gesunde Pflanz 71:1–7

    Article  CAS  Google Scholar 

  • Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020a) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 117–145

    Google Scholar 

  • Raza A, Hafeez MB, Zahra N, Shaukat K, Umbreen S, Tabassum J, Charagh S, Khan RSA, Hasanuzzaman M (2020b) The plant family Brassicaceae: introduction, biology, and importance. In: The plant family Brassicaceae. Springer, Singapore, pp 1–43

    Google Scholar 

  • Raza A, Charagh S, Razzaq A, Javed R, Khan RSA, Hasanuzzaman M (2020c) Brassicaceae plants response and tolerance to drought stress: physiological and molecular interventions. In: The plant family Brassicaceae. Springer, Singapore, pp 229–261

    Chapter  Google Scholar 

  • Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, Sharif R, Hasanuzzaman M (2020d) Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9:177

    Article  CAS  PubMed Central  Google Scholar 

  • Reddy PP (2015) Climate resilient agriculture for ensuring food security, vol 373. Springer, New Delhi

    Book  Google Scholar 

  • Sabagh AE et al (2019) Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Aust J Crop Sci 13:88

    Article  CAS  Google Scholar 

  • Sáez-Vásquez J, Raynal M, Meza-Basso L, Delseny M (1993) Two related, low-temperature-induced genes from Brassica napus are homologous to the human tumour bbc1 (breast basic conserved) gene. Plant Mol Biol 23:1211–1221

    Article  PubMed  Google Scholar 

  • Salvagiotti F, Miralles DJ (2008) Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur J Agron 28:282–290

    Article  CAS  Google Scholar 

  • Salim N, Raza A (2020) Nutrient use efficiency (NUE) for sustainable wheat production: A review. J Plant Nutri 43:297–315.

    Article  CAS  Google Scholar 

  • Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plant 6:34–45

    Article  CAS  Google Scholar 

  • Sattar A, Cheema MA, Wahid M, Saleem M, Hassan M (2011) Interactive effect of sulphur and nitrogen on growth, yield and quality of canola. Crop Environ 2:32–37

    Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Setter T, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shabani A, Sepaskhah A, Kamgar-Haghighi A (2013) Growth and physiologic response of rapeseed (Brassica napus L.) to deficit irrigation, water salinity and planting method. Int J Plant Prod 7:569–596

    CAS  Google Scholar 

  • Shahbaz M, Noreen N, Perveen S (2013) Triacontanol modulates photosynthesis and osmoprotectants in canola (Brassica napus L.) under saline stress. J Plant Interact 8:350–359

    Article  CAS  Google Scholar 

  • Shekhawat K, Rathore S, Premi O, Kandpal B, Chauhan J (2012) Advances in agronomic management of Indian mustard (Brassica juncea (L.) Czernj. Cosson): an overview. Int J Agron 2012:408824

    Article  Google Scholar 

  • Shirazi FA, Razi H, Niazi A, Alemzadeh A (2019) Molecular cloning and expression analysis of a stress-responsive WRKY transcription factor gene, BnWRKY57, from Brassica napus. Plant Omics 12:37

    Article  CAS  Google Scholar 

  • Snowdon RJ, Iniguez Luy FL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131:351–360

    Article  CAS  Google Scholar 

  • Sulmon C et al (2015) Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environ Poll 202:66–77

    Article  CAS  Google Scholar 

  • Song F, Hu L, Zhou G, Wu J, Fu T (2010) Effects of waterlogging time on rapeseed (Brassica napus L.) growth and yield. Acta Agron Sin 36:170–176

    Article  CAS  Google Scholar 

  • Tahir M, Ali A, Nadeem MA, Tanveer A, Sabir Q (2007) Performance of canola (Brassica napus L.) under different irrigation levels. Pak J Bot 39:739–746

    Google Scholar 

  • Tayo T, Morgan D (1975) Quantitative analysis of the growth, development and distribution of flowers and pods in oil seed rape (Brassica napus L.). J Agric Sci 85:103–110

    Article  Google Scholar 

  • Tesfamariam EH, Annandale JG, Steyn JM (2010) Water stress effects on winter canola growth and yield. Agron J 102:658–666

    Article  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Guerreiro S, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USDA-ARS (2017) Germplasm resources information network (GRIN) taxonomy for plants. Taxon: Brassica napus L. United States Department of Agriculture. Agricultural Research Service, Beltsville Area. https://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?7661

  • Ullah F, Bano A, Nosheen A (2012) Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pak J Bot 44:1873–1880

    CAS  Google Scholar 

  • Ulhassan Z, Gill RA, Huang H, Ali S, Mwamba TM, Ali B, Huang Q, Hamid Y, Khan AR, Wang J (2019) Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiol Biochem 145:142–152

    Article  CAS  PubMed  Google Scholar 

  • Ur Rehman H, Iqbal Q, Farooq M, Wahid A, Afzal I, Basra SM (2013) Sulphur application improves the growth, seed yield and oil quality of canola. Acta Pysiol Pant 35:2999–3006

    Google Scholar 

  • Varshney R et al (2007) Extending the repertoire of microsatellite markers for genetic linkage mapping and germplasm screening in chickpea. J SAT Agric Res 5:1–3

    Google Scholar 

  • Wahid A, Jamil A (2009) Inducing salt tolerance in canola (Brassica napus L.) by exogenous application of glycinebetaine and proline: response at the initial growth stages. Pak J Bot 41:1311–1319

    Google Scholar 

  • Wang M-M et al (2018a) Global analysis of WOX transcription factor gene family in Brassica napus reveals their stress-and hormone-responsive patterns. Int J Mol Sci 19:3470

    Article  PubMed Central  CAS  Google Scholar 

  • Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X (2018b) Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC Plant Biol 18:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jin S, Xu Y, Li S, Zhang S, Yuan Z, Li J, Ni Y (2020) Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J 8:26–37

    Article  Google Scholar 

  • Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plant 48:509–515

    Article  CAS  Google Scholar 

  • Wan H, Chen L, Guo J, Li Q, Wen J, Yi B, Ma C, Tu J, Fu T, Shen J (2017) Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci 8:593

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu F, Bao W, Li F, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255

    Article  CAS  Google Scholar 

  • Wu Z, Yin X, Bañuelos GS, Lin Z-Q, Liu Y, Li M, Yuan L (2016) Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Front Plant Sci 7:1875

    PubMed  PubMed Central  Google Scholar 

  • Wu W, Ma BL (2016) A new method for assessing plant lodging and the impact of management options on lodging in canola crop production. Sci Rep 6:31890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Ma BL, Whalen JK (2018) Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. Advances in agronomy. Academic Press, Amsterdam, pp 87–157

    Google Scholar 

  • Xe S, Xx F, Li C, Zp Z, Lj W (2015) Study on salt tolerance with YHem1 transgenic canola (Brassica napus). Physiol Plant 154:223–242

    Article  CAS  Google Scholar 

  • Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theor Appl Genet 121:1141–1150

    Article  PubMed  Google Scholar 

  • Xu M et al (2015) The effect of waterlogging on yield and seed quality at the early flowering stage in Brassica napus L. Field Crop Res 180:238–245

    Article  Google Scholar 

  • Yan L, Riaz M, Wu X, Wang Y, Du C, Jiang C (2018) Interaction of boron and aluminum on the physiological characteristics of rape (Brassica napus L.) seedlings. Acta Physiol Plant 40:33

    Article  CAS  Google Scholar 

  • Yao K, Lockhart KM, Kalanack JJ (2005) Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds. Plant Physiol Biochem 43:83–89

    Article  CAS  PubMed  Google Scholar 

  • Ying L, Chen H, Cai W (2014) BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus. Plant Physiol Biochem 79:77–87

    Article  CAS  PubMed  Google Scholar 

  • Zamani S, Nezami M, Habibi D, Khorshidi M (2010) Effect of quantitative and qualitative performance of four canola cultivars (Brassica napus L) to salinity conditions. Adv Environ Biol 1:422–428

    Google Scholar 

  • Zaman QU, Li C, Cheng H, Hu Q (2019) Genome editing opens a new era of genetic improvement in polyploid crops. Crop J 7:141–150

    Article  Google Scholar 

  • Zhang H et al (2014a) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Chang Y, Wang J, Wang N, Wang Y, Chen Q, Sun W (2013) Cloning and expression analysis of a BnICE1 from Brassica napus L. Sci Agric Sin 1:205–214

    Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014b) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao TJ, Liu Y, Yan YB, Feng F, Liu WQ, Zhou HM (2007) Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Lett 581:3044–3050

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Hu C, Tan Q, Liu J, Sun X (2012) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57:429–434

    Article  Google Scholar 

  • Zhu Y et al (2012) Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.). Theor Appl Genet 124:515–531

    Article  CAS  PubMed  Google Scholar 

  • Zirgoli MH, Kahrizi D (2015) Effects of end-season drought stress on yield and yield components of rapeseed (Brassica napus L.) in warm regions of Kermanshah Province. Biharean Biol 9:133–140

    Google Scholar 

Download references

Acknowledgements

The author wants to say special thanks to his wife (Aasma Ali) and a newly born baby girl for giving me time and consistent support to complete the revision of this manuscript. The author is grateful to the researchers whose contributions have been cited in this review, which have helped me to prepare this review paper. Further, the author also apologizes to all researchers whose relevant work could not be cited due to space limitations.

Funding

There was no external funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

AR conceived the idea, wrote the manuscript and prepared the final version of the manuscript.

Corresponding author

Correspondence to Ali Raza.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A. Eco-physiological and Biochemical Responses of Rapeseed (Brassica napus L.) to Abiotic Stresses: Consequences and Mitigation Strategies. J Plant Growth Regul 40, 1368–1388 (2021). https://doi.org/10.1007/s00344-020-10231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10231-z

Keywords

Navigation