Skip to main content

Advertisement

Log in

Roles of Plant Endosphere Microbes in Agriculture-A Review

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Despite the importance of diverse plant growth-promoting endophytes in agricultural production, their biotechnological and agricultural applications are not well-documented. The diversity of microbial communities interacting with the endosphere contributes to plant functions and immunity, leading to higher productivity. Plant-microbe interactions range from beneficial in terms of influencing plant growth to harmful, as they also cause plant diseases. Microbial survival in the internal tissues of plants depends on their colonization tendencies and their ability to compete with the indigenous plant microflora. The infiltration of microbes through the external soil-root environment into the plant endosphere significantly enhances growth-promoting attributes of plants such as antibiosis, siderophore production, induced systemic resistance, bioremediation and growth hormones synthesis. However, the growth and diversity of endophytic microbes are influenced by the availability of soil nutrients, presence of pathogens, plant growth stages, plant genome, and other abiotic factors. Knowledge and understanding of the possible use and biotechnological relevance of endosphere communities in sustainable agriculture cannot be overemphasized. Hence, this review discusses the importance of endophytic microbes in agriculture for enhancing crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abonyi DO, Eze PM, Abba CC, Ujam NT, Proksch P, Okoye FB, Esimone CO (2018) Biologically active phenolic acids produced by Aspergillus sp., an endophyte of Moringa oleifera. Eur J Biol Res 8:157–167

    Google Scholar 

  • Adegbeye MJ, Ravi Kanth Reddy P, Obaisi AI, Elghandour MMMY, Oyebamiji KJ, Salem AZM, Morakinyo-Fasipe OT, Cipriano-Salazar M, Camacho-Díaz LM (2020) Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations—an overview. J Clean Prod 242:118319. https://doi.org/10.1016/j.jclepro.2019.118319

    Article  CAS  Google Scholar 

  • Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Int Microbiol 24:1–17. https://doi.org/10.1007/s10123-020-00140-2

    Article  PubMed  Google Scholar 

  • Adeleke BS, Babalola OO (2021) Biotechnological overview of agriculturally important endophytic fungi. Hortic Environ Biotechnol 63:1–14

    Google Scholar 

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  • Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11:179

    Article  CAS  Google Scholar 

  • Alemu F (2016) Isolation of Pseudomonas fluorescens species from faba Bean rhizospheric soil and assessment of indole acetic acid production: In vitro study, Ethiopia. Amer J Biosci 4:9–15

    Article  CAS  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  • Alster CJ, von Fischer JC, Allison SD, Treseder KK (2020) Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Change Biol 26:3221–3229

    Article  Google Scholar 

  • Alvin A, Kalaitzis J, Sasia B, Neilan B (2016) Combined genetic and bioactivity-based prioritization leads to the isolation of an endophyte-derived antimycobacterial compound. J Appl Microbiol 120:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Anisha C, Jishma P, Bilzamol VS, Radhakrishnan E (2018) Effect of ginger endophyte Rhizopycnis vagum on rhizome bud formation and protection from phytopathogens. Biocatal Agric Biotechnol 14:116–119

    Article  Google Scholar 

  • Arafa M, El-Batanony NH (2018) Growth, yield and chemical composition response of some legume crops to inoculation with non-rhizobial endophytic bacteria from Melilotus indicus (L.) all. Nodules. J Plant Prod 9:353–358

    Google Scholar 

  • Ardanov P, Lyastchenko S, Karppinen K, Häggman H, Kozyrovska N, Pirttilä AM (2016) Effects of Methylobacterium sp. on emergence, yield, and disease prevalence in three cultivars of potato (Solanum tuberosum L.) were associated with the shift in endophytic microbial community. Plant Soil 405:299–310

    Article  CAS  Google Scholar 

  • Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383. https://doi.org/10.1016/j.funbio.2019.02.003

    Article  PubMed  Google Scholar 

  • Asghari S, Harighi B, Ashengroph M, Clement C, Aziz A, Esmaeel Q, Ait Barka E (2020) Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol 69:827–837

    Article  CAS  Google Scholar 

  • Baiyee B, Ito S-i, Sunpapao A (2019) Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol Mol Plant Pathol 106:96–101

    Article  CAS  Google Scholar 

  • Banik A, Mukhopadhaya SK, Dangar TK (2016) Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243:799–812

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Salazar B, Puente ME, Bacilio M, Linderman R (2009) Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biol Fertil Soils 45:585–594

    Article  Google Scholar 

  • Bergna A, Cernava T, Rändler M, Grosch R, Zachow C, Berg G (2018) Tomato seeds preferably transmit plant beneficial endophytes. Phytobiomes J 2:183–193

    Article  Google Scholar 

  • Braga A, Faria N (2020) Bioprocess optimization for the production of aromatic compounds with metabolically engineered hosts: recent developments and future challenges. Front Bioeng Biotechnol 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucci EM (2018) Xylella fastidiosa, a new plant pathogen that threatens global farming: ecology, molecular biology, search for remedies. Biochem Biophy Res Comm 502:173–182

    Article  CAS  Google Scholar 

  • Card SD, Hume DE, Roodi D, McGill CR, Millner JP, Johnson RD (2015) Beneficial endophytic microorganisms of Brassica—a review. Biol Control 90:102–112. https://doi.org/10.1016/j.biocontrol.2015.06.001

    Article  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravorty P, Srivastava N, Ibeyaima A, Sarethy IP (2020) Antimicrobial and antioxidant compounds in endophyte isolate L-003 obtained from the aquatic plant Nelumbo nucifera. The Nat Prod J 10:139–144

    CAS  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10. https://doi.org/10.1016/j.soilbio.2016.04.004

    Article  CAS  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel G, Ramaraj G, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64

    Article  CAS  Google Scholar 

  • Chu X, Awasthi MK, Liu Y, Cheng Q, Qu J, Sun Y (2021) Studies on the degradation of corn straw by combined bacterial cultures. Biores Technol 320:124174

    Article  CAS  Google Scholar 

  • Cole MB, Augustin MA, Robertson MJ, Manners JM (2018) The science of food security. npj Sci Food 2:1–8

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Kaplan H, Sessitch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

  • Crozier A, Arruda P, Jasmim JM, Monteiro AM, Sandberg G (1988) Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol 54:2833–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Critl Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dobereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Döbereiner J (1992) Recent changes in concepts of plant bacteria interactions: endophytic N2 fixing bacteria. Ciência e Cultura 44:310–313

    Google Scholar 

  • Dong L, Cheng R, Xiao L, Wei F, Wei G, Xu J, Wang Y, Guo X, Chen Z, Chen S (2018) Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin Med 13:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doolotkeldieva T, Bobusheva S (2016) Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv Microbiol 6:831

    Article  CAS  Google Scholar 

  • Dubey A, Saiyam D, Kumar A, Hashem A, Abd Allah EF, Khan ML (2021) Bacterial root endophytes: characterization of their competence and plant growth promotion in soybean (Glycine max (L.) Merr.) under drought stress. Int J Environ Res Public Health 18:931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Nat Acad Sci 112:911–920

    Article  CAS  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng N-X, Yu J, Zhao H-M, Cheng Y-T, Mo C-H, Cai Q-Y, Li Y-W, Li H, Wong M-H (2017) Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ 583:352–368. https://doi.org/10.1016/j.scitotenv.2017.01.075

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AS, Balbinot Junior AA, Werner F, Zucareli C, Franchini JC, Debiasi H (2016) Plant density and mineral nitrogen fertilization influencing yield, yield components and concentration of oil and protein in soybean grains. Bragantia 75:362–370

    Article  CAS  Google Scholar 

  • Ferreira MJ, Silva H, Cunha A (2019) Siderophore-producing rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: a review. Pedosphere 29:409–420. https://doi.org/10.1016/S1002-0160(19)60810-6

    Article  Google Scholar 

  • Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SE-D (2021) Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants 10:76

    Article  CAS  PubMed Central  Google Scholar 

  • Garcia MM, Pereira LC, Braccini AL, Angelotti P, Suzukawa AK, Marteli D, Felber PH, Bianchessi PA, Dametto IB (2017) Effects of Azospirillum brasilense on growth and yield compounds of maize grown at nitrogen limiting conditions. Rev Ciênc Agrár 40:353–362

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Ma W (2001) Bacterial promotion of plant growth. Biotechnol Adv 19:135–138

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H-S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gupta P, Kumar V, Usmani Z, Rani R, Chandra A, Gupta VK (2020) Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress. Chemosphere 240:124944. https://doi.org/10.1016/j.chemosphere.2019.124944

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462

    Article  CAS  PubMed  Google Scholar 

  • Hafsan H, Nurhikmah N, Harviyanti Y, Sukmawati E, Rasdianah I, Muthiadin C, Agustina L, Natsir A, Ahmad A (2018) The potential of endophyte bacteria isolated from Zea mays L as phytase producers. J Pure Appl Microbiol 12:1–4

    Article  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashem A, Tabassum B, Fathi Abd Allah E (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci 26:1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He W-S, Cui D, Li L, Tong L-T, Rui J, Li H, Zhang H, Liu X (2019) Cholesterol-reducing effect of ergosterol is modulated via inhibition of cholesterol absorption and promotion of cholesterol excretion. J Func Foods 57:488–496

    Article  CAS  Google Scholar 

  • Hiruma K, Kobae Y, Toju H (2018) Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host–symbiont molecular mechanisms. Curr Opin Plant Biol 44:145–154. https://doi.org/10.1016/j.pbi.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  • Hong CE, Kim JU, Lee JW, Lee SW, Jo I-H (2018) Diversity of bacterial endophytes in Panax ginseng and their protective effects against pathogens. Biotechnol 8:397

    Google Scholar 

  • Huang Y, Kuang Z, Wang W, Cao L (2016) Exploring potential bacterial and fungal biocontrol agents transmitted from seeds to sprouts of wheat. Biol Control 98:27–33

    Article  Google Scholar 

  • Ismaila AH, Qadira M, Husnaa MI, Ahmadb A, Hamayuna M (2018) Endophytic fungi isolated from Citrullus colocynthesl leaves and their potential for secretion of indole acetic acid and gibberellin. J Appl Environ Biol Sci 8:80–84

    Google Scholar 

  • Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45. https://doi.org/10.1016/j.biocontrol.2017.01.018

    Article  Google Scholar 

  • Jambon I, Thijs S, Weyens N, Vangronsveld J (2018) Harnessing plant-bacteria-fungi interactions to improve plant growth and degradation of organic pollutants. J Plant Interact 13:119–130

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, de Oliveira AL, dos Reis Jr FB, da Silva LG, Reis VM (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52:747–760

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian R (2018) Effect of root-associated bacteria on soluble sugar metabolism in plant under environmental stress. Plant metabolites and regulation under Environ mental stress. Elsevier, Amsterdam, pp 231–240

    Google Scholar 

  • Ji J, Yuan D, Jin C, Wang G, Li X, Guan C (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol Plantarum 42:1–17

    Article  CAS  Google Scholar 

  • Jiao R, Munir S, He P, Yang H, Wu Y, Wang J, He P, Cai Y, Wang G, He Y (2020) Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion. Biol Control 143:104160

    Article  CAS  Google Scholar 

  • Kandel S, Joubert P, Doty S (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5:77

    Article  PubMed Central  CAS  Google Scholar 

  • Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22

    Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M (2019) Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 42:248–260. https://doi.org/10.1016/j.syapm.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201:599–609

    Article  CAS  PubMed  Google Scholar 

  • Kollakkodan N, Anith K, Nysanth N (2020) Endophytic bacteria from Piper colubrinum suppress Phytophthora capsici infection in black pepper (Piper nigrum L.) and improve plant growth in the nursery. Arch Phytopathol Plant Prot 10(1080/03235408):1818493

    Google Scholar 

  • Korenblum E, Aharoni A (2019) Phytobiome metabolism: beneficial soil microbes steer crop plants’ secondary metabolism. Pest Manag Sci 75:2378–2384

    CAS  PubMed  Google Scholar 

  • Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Reg 35:1074–1087

    Article  CAS  Google Scholar 

  • Larran S, Simon MR, Moreno MV, Siurana MS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485

    Article  CAS  PubMed  Google Scholar 

  • Lin G-Y, Lin C-Y, Chang S-J, Lin W-Y (2020) The dynamics of endophytic bacterial community structure in rice roots under different field management systems. Agronomy 10:1623

    Article  CAS  Google Scholar 

  • Lobo CB, Juárez Tomás MS, Viruel E, Ferrero MA, Lucca ME (2019) Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol Res 219:12–25. https://doi.org/10.1016/j.micres.2018.10.012

    Article  CAS  PubMed  Google Scholar 

  • López-BucioCruz-Ramı́rez JA, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. https://doi.org/10.1016/S1369-5266(03)00035-9

    Article  CAS  Google Scholar 

  • Ma T, Zeng W, Li Q, Wu J, Huang J (2016a) Effects of water, salt and nitrogen stress on sunflower (Helianthus annuus L.) at different growth stages. J Soil Sci Plant Nutri 16:1024–1037

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016b) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  • Mane R, Vedamurthy A (2018) The fungal endophytes: sources and future prospects. J Med Plants Studies 6:121–126

    Google Scholar 

  • Mashiane RA, Ezeokoli OT, Adeleke RA, Bezuidenhout CC (2017) Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33:80

    Article  PubMed  CAS  Google Scholar 

  • Merasenla A, Gayan A, Buragohain S, Nath DJ (2016) Occurrences and characterization of endophytic Gluconacetobacter isolated from sugarcane tissues of North Eastern region of India. Ind J Agric Res 50:287–294

    Google Scholar 

  • Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID (2015) Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front Microbiol 6:1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17:119–128. https://doi.org/10.1016/j.bcab.2018.11.009

    Article  Google Scholar 

  • Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM (2016) Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23:6940–6950

    Article  CAS  Google Scholar 

  • Mukherjee A, Singh B, Verma JP (2020) Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiol Res 237:126469

    Article  CAS  PubMed  Google Scholar 

  • Nefzi A, Abdallah RAB, Jabnoun-Khiareddine H, Ammar N, Daami-Remadi M (2019) Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium crown and root rot and to promote growth in tomato. Braz J Microbiol 50:481–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehra V, Saharan BS, Choudhary M (2016) Evaluation of Brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (Gossypium hirsutum) crop. Springerplus 5:948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nohwar N, Khandare RV, Desai NS (2019) Isolation and characterization of salinity tolerant nitrogen fixing bacteria from Sesbania sesban (L) root nodules. Biocatal Agric Biotechnol 21:101325. https://doi.org/10.1016/j.bcab.2019.101325

    Article  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16:3873

    Article  CAS  PubMed Central  Google Scholar 

  • Ojuederie OB, Olanrewaju OS, Babalola OO (2019) Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9:712

    Article  CAS  Google Scholar 

  • Okon Y, Kapulnik Y (1986) Development and function of Azospirillum-inoculated roots. Plant Soil 90:3–16

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Oliveira Ad, Urquiaga S, Döbereiner J, Baldani J (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481

    Article  PubMed Central  Google Scholar 

  • Orozco-Mosqueda MdC, Rocha-Granados MdC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31. https://doi.org/10.1016/j.micres.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  • Otieno N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Google Scholar 

  • Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycot Res 31:137–143

    Article  CAS  Google Scholar 

  • Pandey PK, Singh S, Singh AK, Samanta R, Yadav RNS, Singh MC (2016) Inside the plant: bacterial endophytes and abiotic stress alleviation. J Appl Nat Sci 8:1899–1904

    Article  CAS  Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, Guerrero-Molina MF, Winik BC, Díaz-Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26:265–272

    Article  Google Scholar 

  • Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199:513–517

    Article  CAS  PubMed  Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Praptiwi MI, Fathoni A, Wulansari D, Agusta A (2015) Antibacterial screening of the culture of endophytic fungal extracts isolated from cinnamon stick (Cinnamomum burmanii [Nees & T. Nees] Blume). J Teknol Indones 38:33–41

    Google Scholar 

  • Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b–2R. Biol Fertil Soils 52:119–125

    Article  CAS  Google Scholar 

  • Qaswar M, Jing H, Ahmed W, Dongchu L, Shujun L, Lu Z, Cai A, Lisheng L, Yongmei X, Jusheng G (2020) Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res 198:104569

    Article  Google Scholar 

  • Ramírez CA, Kloepper JW (2010) Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils 46:835–844

    Article  CAS  Google Scholar 

  • Rani R, Kumar V, Usmani Z, Gupta P, Chandra A (2019) Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil. Chemosphere 225:479–489

    Article  CAS  PubMed  Google Scholar 

  • Rasul M, Yasmin S, Zubair M, Mahreen N, Yousaf S, Arif M, Sajid ZI, Mirza MS (2019) Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil. Biol Control 136:103997. https://doi.org/10.1016/j.biocontrol.2019.05.016

    Article  CAS  Google Scholar 

  • Rath M, Mitchell T, Gold S (2018) Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res 208:76–84

    Article  CAS  PubMed  Google Scholar 

  • Reeve W, Ardley J, Tian R, Eshragi L, Yoon JW, Ngamwisetkun P, Seshadri R, Ivanova NN, Kyrpides NC (2015) A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genom Sci 10:14

    Article  Google Scholar 

  • Romeh A, Hendawi M (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Technol 16:265–276

    Google Scholar 

  • Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827. https://doi.org/10.1016/j.chemosphere.2018.12.203

    Article  CAS  PubMed  Google Scholar 

  • Sah S, Singh N, Singh R (2017) Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech 7:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:30

    Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash G, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

    Article  CAS  Google Scholar 

  • Salam M, Varma A (2019) Bacterial community structure in soils contaminated with electronic waste pollutants from Delhi NCR, India. Electron J Biotechnol 41:72–80. https://doi.org/10.1016/j.ejbt.2019.07.003

    Article  CAS  Google Scholar 

  • Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, Hüttel S (2019) Biological and chemical diversity go hand in hand: basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 37:107344. https://doi.org/10.1016/j.biotechadv.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284. https://doi.org/10.1016/j.bcab.2019.101284

    Article  Google Scholar 

  • Shah S, Shrestha R, Maharjan S, Selosse M-A, Pant B (2019) Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 8:5

    Article  CAS  Google Scholar 

  • Shahid M, Hameed S, Tariq M, Zafar M, Ali A, Ahmad N (2015) Characterization of mineral phosphate-solubilizing bacteria for enhanced sunflower growth and yield-attributing traits. Ann Microbiol 65:1525–1536

    Article  CAS  Google Scholar 

  • Sharma KP (2019) Tannin degradation by phytopathogen’s tannase: a plant’s defense perspective. Biocatal Agric Biotechnol 21:101342. https://doi.org/10.1016/j.bcab.2019.101342

    Article  Google Scholar 

  • Shehata H, Lyons E, Jordan K, Raizada M (2016) Bacterial endophytes from wild and ancient maize are able to suppress the fungal pathogen Sclerotinia homoeocarpa. J Appl Microbiol 120:756–769

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biology Fertil Soils 45:645–653

    Article  CAS  Google Scholar 

  • Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Strain 90:166

    Google Scholar 

  • Singh DK, Sharma VK, Kumar J, Mishra A, Verma SK, Sieber TN, Kharwar RN (2017) Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn. f.: spatiotemporal and tissue type effects. Sci Rep 7:1–14

    CAS  Google Scholar 

  • Smercina DN, Evans SE, Friesen ML, Tiemann LK (2019) To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Appl Environ Microbiol 85:e02518-e2546

    Google Scholar 

  • Souza ARCd, Baldoni DB, Lima J, Porto V, Marcuz C, Machado C, Ferraz RC, Kuhn RC, Jacques RJ, Guedes JV (2017) Selection, isolation, and identification of fungi for bioherbicide production. Braz J Microbiol 48:101–108

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PJPL, Colaianni NR, Fitzpatrick CR, Dangl JL (2019) Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol 49:7–17. https://doi.org/10.1016/j.mib.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Rana C (2015) Plant secondary metabolites: a review. Int J Eng Res Gen Sci 3:661–670

    Google Scholar 

  • Tiwari K, Thakur HK (2014) Diversity and molecular characterization of dominant Bacillus amyloliquefaciens (JNU-001) endophytic bacterial strains isolated from native neem varieties of Sanganer region of Rajasthan. J Biodiv Bioprosp Dev 1:115

    Google Scholar 

  • Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N (2017) Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7:40–50

    Article  Google Scholar 

  • Tyc O, Putra R, Gols R, Harvey JA, Garbeva P (2020) The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. Microbiol Open 9:e00954

    Article  Google Scholar 

  • Uzoh IM, Babalola OO (2018) Rhizosphere biodiversity as a premise for application in bio-economy. Agric Ecosyst Environ 265:524–534. https://doi.org/10.1016/j.agee.2018.07.003

    Article  Google Scholar 

  • van Overbeek LS, Saikkonen K (2016) Impact of bacterial–fungal interactions on the colonization of the endosphere. Trends Plant Sci 21:230–242

    Article  PubMed  CAS  Google Scholar 

  • Vaz AB, Fonseca PL, Badotti F, Skaltsas D, Tomé LM, Silva AC, Cunha MC, Soares MA, Santos VL, Oliveira G (2018) A multiscale study of fungal endophyte communities of the foliar endosphere of native rubber trees in Eastern Amazon. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • Verma S, White J (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124:764–778

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the Northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Vidya P, Shintu P, Jayaram K (2016) Impact of phopshate solubilizing bacteria (Bacillus polymixa) on drought tolerance of green gram (Vigna radiata (L.) Wilczek). Ann Plant Sci 5:1318–1323

    Article  Google Scholar 

  • Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016a) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188–189:1–8. https://doi.org/10.1016/j.micres.2016.04.009

    Article  PubMed  Google Scholar 

  • Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016b) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188:1–8

    Article  PubMed  Google Scholar 

  • Wang Q, Jiang X, Guan D, Wei D, Zhao B, Ma M, Chen S, Li L, Cao F, Li J (2018) Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Appl Soil Ecol 125:88–96

    Article  Google Scholar 

  • Wang G, Ye C, Zhang J, Koziol L, Bever JD, Li X (2019) Asymmetric facilitation induced by inoculation with arbuscular mycorrhizal fungi leads to overyielding in maize/faba bean intercropping. J Plant Interact 14:10–20

    Article  CAS  Google Scholar 

  • Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y (2020) The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. J Hazard Mater 395:122661

    Article  CAS  PubMed  Google Scholar 

  • Wubshet Z (2018) Economic importance and management of ginger bacterial wilt caused by Ralstonia solanacearum. Int J Res Study Agric Sci 4:1–11

    Google Scholar 

  • Xin X-F, Kvitko B, He SY (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Cao L, Zeng J, Franco CM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z (2019) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pesticide Biochem Physiol 160:58–69

    Article  CAS  Google Scholar 

  • Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye D, Li T, Yi Y, Zhang X, Zou L (2019) Characteristics of endophytic fungi from polygonum hydropiper suggest potential application for P-phytoextraction. Fungal Ecol 41:126–136. https://doi.org/10.1016/j.funeco.2019.05.001

    Article  Google Scholar 

  • Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS One 12:e0170557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Zhang W, Li Q, Cui R, Wang Z, Wang Y, Zhang Y-Z, Ding W, Shen X (2020a) Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria. Appl Environ Microbiol 86:e02863-e2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Su C, Liu X, Liu Z, Liang X, Zhang Y, Feng Y (2020b) Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere 241:125027. https://doi.org/10.1016/j.chemosphere.2019.125027

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Mao Y, Teng J, Zhu Q, Ling J, Zhong Z (2015) Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: study of an flgE mutant. Curr Microbiol 70:219–227

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y-K, Miao C-P, Chen H-H, Huang F-F, Xia Y-M, Chen Y-W, Zhao L-X (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41:353–360

    Article  PubMed  Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

B.S.A. is grateful to the National Research Foundation (NRF), South Africa/The World Academy of Science African Renaissance Ph.D. scholarship (Ref: UID: 116100) for giving him a stipend. O.O.B. acknowledges NRF for the grants (UID: 123634; 132595) that support research in her laboratory.

Funding

This study was funded by the National Research Foundation of South Africa (UID: 123634; 132595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this review paper.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke, B.S., Babalola, O.O. Roles of Plant Endosphere Microbes in Agriculture-A Review. J Plant Growth Regul 41, 1411–1428 (2022). https://doi.org/10.1007/s00344-021-10406-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10406-2

Keywords

Navigation