Skip to main content
Log in

Coherent structures in unsteady swirling jet flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

An LDA technique and phase-averaging analysis were used to study unsteady precessing flow in a model vortex burner. Detailed measurements were made for Re=15,000 and S=1.01. On the basis of the analysis of phase-averaged data and vortex detection by the λ2-technique of Joeng and Hussain (1995), three precessing spiral vortex structures were identified: primary vortex (PV), inner secondary vortex (ISV), and outer secondary vortex (OSV). The PV is the primary and most powerful structure as it includes primary vorticity generated by the swirler; the ISV and OSV are considered here as secondary vortical structures. The jet breakdown zone is the conjunction of a pair of co-rotating co-winding spiral vortices, PV and ISV. The interesting new feature described is that the secondary vortices form a three-dimensional vortex dipole with a helical geometry. The effect of coupling of secondary vortices was suggested as a mechanism of enhanced stability reflected in their increased axial extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Abdeli YM, Masri AR (2004) Precession and recirculation in turbulent swirling isothermal jets. Combust Sci Technol 176:645–665

    Article  Google Scholar 

  • Alekseenko SV, Kuibin PA, Okulov VL, Shtork SI (1999) Helical vortices in swirl flow. J Fluid Mech 382:195–243

    Article  MATH  MathSciNet  Google Scholar 

  • Alekseenko SV, Shtork SI (1995) Experimental study of vortex breakdown in intensively swirling flows. In: EUROMECH colloquium N 336 on flows dominated by centrifugal and Coriolis forces, Trondheim, Norway

  • Althaus W, Brücker C, Weimer M (1995) Breakdown of slender vortices. In: Green S (ed) Fluid vortices. Kluwer Academic Publishers, pp 373–426

  • Anacleto PM, Fernandes EC, Heitor MV, Shtork SI (2003) Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust Sci Technol 175(8):1369–1388

    Article  Google Scholar 

  • Billant P, Chomaz J-M, Huerre P (1998) Experimental study of vortex breakdown in swirling jets. J Fluid Mech 376:183–219

    Article  MATH  MathSciNet  Google Scholar 

  • Chanaud RC (1965) Observations of oscillatory motion in certain swirling flows. J Fluid Mech 21:11–127

    Article  Google Scholar 

  • Derksen J, Van den Akker HEA (2000) Simulation of vortex core precession in a reverse-flow cyclone. AIChE J 46(7):1317–1331

    Article  Google Scholar 

  • Escudier MP (1988) Vortex breakdown: observations and explanations. Prog Aerosp Sci 25:189–229

    Article  Google Scholar 

  • Fernandes EC (1998) The onset of combustion-driven acoustic oscillations. Ph.D. thesis, Instituto Superior Técnico

  • Froud D, O’Doherty T, Syred N (1995) Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame 100:407–412

    Article  Google Scholar 

  • Gallaire F, Chomaz J-M (2003a) Instability mechanisms in swirling flows. Phys Fluids 15(9):2622–2639

    Article  MathSciNet  Google Scholar 

  • Gallaire F, Chomaz J-M (2003b) Mode selection in swirling jet experiments: a linear stability analysis. J Fluid Mech 494:223–253

    Article  MATH  MathSciNet  Google Scholar 

  • Gallaire F, Rott S, Chomaz J-M (2004) Experimental study of a free and forced swirling jet. Phys Fluids 16(8):2907–2917

    Article  Google Scholar 

  • Galletti C, Paglianti A, Lee KC, Yianneskis M (2004) Reynolds number and impeller diameter effects on instabilities in stirred vessels. AIChE J 50(9):2050–2063

    Article  Google Scholar 

  • Goto S, Kida S (2003) Enhanced stretching of material lines by antiparallel vortex pairs in turbulence. Fluid Dyn Res 33:403–431

    Article  MATH  MathSciNet  Google Scholar 

  • Griffiths AJ, Yazdabadi PA, Syred N (1998) Alternate eddy shedding set up by the nonaxisymmetric recirculation zone at the exhaust of a cyclone dust separator. J Fluids Eng 120(1):193–199

    Google Scholar 

  • Grosjean N, Graftieaux L, Michard M, Hübner W, Tropea C, Volkert J (1997) Combining LDA, PIV for turbulence measurements in unsteady swirling flows. Meas Sci Technol 8:1523–1532

    Article  Google Scholar 

  • Hartmann H, Derksen JJ, Van den Akker HEA (2004) Macroinstability uncovered in a rushton turbine stirred tank by means of LES. AIChE J 50(10):2383–2393

    Article  Google Scholar 

  • Heitor MV, Moreira ALN (1992) Velocity characteristics of a swirling recirculating flow. Exp Therm Fluid Sci 5:369–380

    Article  Google Scholar 

  • Heitor MV, Whitelaw JH (1986) Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combust Flame 64:1–32

    Article  Google Scholar 

  • Huang Y, Sung H-G, Hsieh S-Y, Yang V (2003) Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor. J Propul Power 19(5):782–794

    Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang M, Machiraju R, Thompson DS (2003) In: Johnson CR, Hansen CD (eds) Detection and visualization of vortices, visualization handbook. Academic, London

  • Kollmann W, Ooi ASH, Chong MS, Soria J (2001) Direct numerical simulations of vortex breakdown in swirling jets. J Turb 2-005 (http://jot.iop.org/)

  • Labbé R, Pinton J-F, Fauve S (1996) Study of the von Karman flow between coaxial corotating disks. Phys Fluids 8(4):914–922

    Article  Google Scholar 

  • Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA J 28(8):1347–1352

    Article  Google Scholar 

  • Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159

    Article  MATH  Google Scholar 

  • Loiseleux T, Chomaz J-M (2003) Breaking of rotational symmetry in a swirling jet experiment. Phys Fluids 15(2):511–523

    Article  MathSciNet  Google Scholar 

  • Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sc 27:431–481

    Article  Google Scholar 

  • Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13(10):2747–2750

    Article  Google Scholar 

  • Montgomery MT, Vladimirov VA, Denisenko PV (2002) An experimental study on hurricane mesovortices. J Fluid Mech 471:1–32

    Article  MATH  Google Scholar 

  • Nicolet C, Arpe J, Avellan F (2004) Identification and modeling of pressure fluctuations of a francis turbine scale model at part load operation. In: 22nd IAHR symposium on hydraulic machinery and systems, Stockholm, Sweden

  • Okulov VL, Fukumoto Y (2004) Helical Dipole. Doklady Phys 49(11):662–667

    Article  Google Scholar 

  • Panda J, McLaughlin DK (1994) Experiments on the instabilities of a swirling jet. Phys Fluids 6(1):263–276

    Article  Google Scholar 

  • Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378

    Article  MATH  MathSciNet  Google Scholar 

  • Schram C, Rambaud P, Riethmuller ML (2004) Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp Fluids 36:233–245

    Article  Google Scholar 

  • Selle L, Lartigue G, Poinsot T, Koch R, Schildmacher K-U, Krebs W, Prade B, Kaufmann P, Veynante D (2004) Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust Flame 137:489–505

    Article  Google Scholar 

  • Syred N, Beer JM (1972) The damping of precessing vortex cores by combustion in swirl generators. Astronautica Acta 17:783–801

    Google Scholar 

  • Syred N, Wong C, Rodriquez-Martinez V, Dawson J, Kelso R (2004) Characterisation of the occurrence of the precessing vortex core in partially premixed and non-premixed swirling flow. In: Proceedings of the 12th international symposium on applications of laser techniques to fluid mechanics, Lisbon

  • Vonnegut B (1954) A vortex whistle. J Acoust Soc Am 26:18–20

    Article  Google Scholar 

  • Wang P, Bai XS, Wessman M, Klingmann J (2004) Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys Fluids 16(9):3306–3324

    Article  Google Scholar 

  • Wegner B, Maltsev A, Schneider C, Sadiki A, Dreizler A, Janicka J (2004) Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int J Heat Fluid Flow 25:528–536

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge support from the Portuguese Science and Technology Foundation (through Research Grant POCTI/34768/EME/1999 and Research Fellowship SFRH/BPD/1641/2000 provided for S.I. Shtork). The help of Mr. Eduardo Bimba in assembling the experimental setup is also gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Shtork.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cala, C.E., Fernandes, E.C., Heitor, M.V. et al. Coherent structures in unsteady swirling jet flow. Exp Fluids 40, 267–276 (2006). https://doi.org/10.1007/s00348-005-0066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0066-9

Keywords

Navigation