Skip to main content
Log in

Experimental characterization of the instability of the vortex ring. Part I: Linear phase

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The results of experiments performed to study the linear phase of the instability of vortex rings are presented. The experiments were performed in water. The vortex rings are generated by pushing water through the cylindrical nozzle of a pipe submerged in an aquarium. The experiments were made with the help of planar laser induced fluorescence as well as 2D2C and 2D3C particle image velocimetry. They show the straining field causing the instability, and for the first time experimentally the growth of a band of linear unstable modes. They also confirm previous studies concerning the shape of the instability and theories predicting the number of waves and the bandwidth of unstable modes. However, the measurement of the growth rate shows the influence of viscous damping, and consequently, the limit of the theories based on the hypothesis of an ideal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

a :

vortex core radius

a e :

effective core radius; defined by \(V = \frac{\Gamma}{{4\pi R}}{\left({\ln \frac{{8R}}{{a_{{\text{e}}}}} - \frac{1}{4}} \right)}\) (Saffman 1978)

a i :

inner core radius (distance from the core centre where the tangential velocity is maximal, Saffman 1978)

A :

initial perturbation

D p :

pipe inner diameter

h :

distance between the laser sheet and the median plane of the vortex

k :

wavenumber

L p :

piston stroke

n :

number of unstable waves

r :

radial coordinate in the cylindrical coordinate system centred on the vortex ring

R :

vortex radius

\(Re_{{\text{p}}} = \frac{{D_{{\text{p}}} U_{{\text{p}}}}}{\nu}\) :

piston Reynolds number based on the piston velocity and the tube diameter

\(Re_{0} = \frac{{2RV}}{\nu}\) :

vortex Reynolds number based on the vortex velocity and diameter

\(Re_{{\text{s}}} = \frac{{\sigma a^{2}_{{\text{i}}}}}{\nu}\) :

instability Reynolds number based on the intensity of the straining field

U p :

average piston velocity

u ρ :

radial velocity in the polar coordinate system centred on the vortex core

u ϕ :

azimuthal velocity in the polar coordinate system centred on the vortex core

V :

propagation speed of the ring

z c :

h/R

α:

growth rate of the instability

Γ:

circulation of the ring

ɛ=a/R :

core radius to diameter radius ratio

ν:

viscosity

ξ:

characteristic parameter of the hypergeometric profile defined by Saffman (1978)

θ:

azimuthal coordinate in the cylindrical coordinate system centred on the vortex ring

ρ:

radial coordinate in the polar coordinate system centred on the vortex core

σ:

strength of the straining field

ϕ:

azimuthal coordinate in the polar coordinate system centred on the vortex core

Φ:

velocity potential

χ:

strength of the perturbation in the geometrical model

ω:

vorticity

0:

zero-order term in ɛ

1:

first-order term in ɛ

2:

second-order term in ɛ

exp:

related to the experiments presented in this paper

saf:

Saffman model (Saffman 1978)

wid:

Widnall model (Widnall and Tsai 1977)

cor:

viscous correction to Widnall model introduced by Shariff et al. (1994)

r :

radial component in the cylindrical coordinate system centred on the vortex ring

θ:

azimuthal component in the cylindrical coordinate system centred on the vortex ring

ρ:

radial component in the polar coordinate system centred on the vortex core

φ:

azimuthal component in the polar coordinate system centred on the vortex core

References

  • Crow SC (1970) Stability theory for a pair of trailing vortices. AIAA J 8:2172

    Article  Google Scholar 

  • Dazin A (2003) Caractérisation de l’instabilité du tourbillon torique par des méthodes optiques quantitatives. PhD Thesis, Université des Sciences et Technologies de Lille

  • Dazin A, Dupont P, Stanislas M (2002) Experimental study of the instability of vortex rings. 11th international symposium—application of laser techniques to fluid mechanics, Lisbon, Portugal

  • Dazin A, Dupont P, Stanislas M (2004) Experimental observation of the straining field responsible for vortex ring instability. CR–Mécanique 332(3):231–236

    Google Scholar 

  • Didden N (1977) Untersuchung laminärer, instabiler Ringwirbel mittels Laser-Doppler-Anemometer, Mitt no. 64. MPI und AVA, Göttingen

  • Dziedzic M, Leutheusser HJ (1996) An experimental study of viscous vortex ring. Exp Fluids 21:315–324

    Article  Google Scholar 

  • Foucaut JM, Miliat B, Perenne N, Stanislas M (2004) Characterization of different PIV algorithms using the EUROPIV synthetic image generator and real images from a turbulent boundary layer. Proceeding of the EUROPIV 2 workshop on particle image velocimetry. Springer, Berlin Heidelberg New York, pp 163–186

  • Fraenkel LE (1972) Examples of steady vortex rings of small cross-section in an ideal fluid. J Fluid Mech 51:119–135

    Article  MATH  Google Scholar 

  • Glezer A, Coles D (1990) An experimental study of a turbulent vortex ring. J Fluid Mech 211:243–283

    Article  Google Scholar 

  • Maxworthy T (1972) The structure and stability of vortex rings. J Fluid Mech 51:15–32

    Article  Google Scholar 

  • Maxworthy T (1977) Some experimental studies of vortex rings. J Fluid Mech 81:465–495

    Article  Google Scholar 

  • Meng H, Hussein F (1995) Instantaneous flow field in an unstable vortex ring measured by holographic particle image velocimetry. Phys Fluids 7:9–11

    Article  Google Scholar 

  • Naitoh T, Fukuda N, Gotoh T, Yamada H, Nakajima K (2002) Experimental study of axial flow in a vortex ring. Phys Fluids 14(1):143–148

    Article  Google Scholar 

  • Saffman PG (1978) The number of waves on unstable vortex rings. J Fluid Mech 84:721–733

    Article  MathSciNet  Google Scholar 

  • Saffman PG (1992) Vortex dynamics. Cambridge monographs on mechanics and applied mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Schneider PEM (1980) Sekundärerwirbelbildung bei Ringwirbeln und in Freistrahlen. Z Flugwiss Weltraumforsch 4:307–318

    Google Scholar 

  • Shariff K, Verzicco R, Orlandi P (1994) A numerical study of three-dimensional vortex ring instabilities: viscous correction and early non-linear stage. J Fluid Mech 279:351–375

    Article  MathSciNet  MATH  Google Scholar 

  • Sullivan JP, Widnall SE, Ezekiel S (1973) Study of vortex rings using a laser Doppler velocimeter. AIAA J 11:1384–1389

    Article  Google Scholar 

  • Tsai CY, Widnall SE (1976) The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J Fluid Mech 73:721–733

    Article  MATH  Google Scholar 

  • Weigand A, Gharib M (1994) On the decay of a turbulent vortex ring. Phys Fluids 6(12):3806–3808

    Article  Google Scholar 

  • Westerweel J, Dabiri D, Gharib M (1997) The effect of a discrete window offset on the accuracy of cross-correlation analysis of PIV recordings. Exp Fluids 23:20–28

    Article  Google Scholar 

  • Widnall SE, Tsai CY (1977) The instability of the thin vortex ring of constant vorticity. Philos Trans R Soc Lond A 287:273–305

    Article  MathSciNet  Google Scholar 

  • Widnall SE, Sullivan JP, Ezekiel S (1973) On the stability of vortex rings. Proc R Soc Lond A 332:335–353

    Article  MATH  Google Scholar 

  • Widnall SE, Bliss DB, Tsai CY (1974) The instability of short waves on a vortex ring. J Fluid Mech 66:35–47

    Article  MATH  MathSciNet  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle velocimetry. Exp Fluids 10:181–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Stanislas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dazin, A., Dupont, P. & Stanislas, M. Experimental characterization of the instability of the vortex ring. Part I: Linear phase. Exp Fluids 40, 383–399 (2006). https://doi.org/10.1007/s00348-005-0075-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-005-0075-8

Keywords

Navigation