Skip to main content
Log in

Visualizations of the flow inside an open cavity at medium range Reynolds numbers

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The interaction between a laminar boundary layer and an open cavity is investigated experimentally for medium range Reynolds numbers. Flow visualizations are carried out for three different observation directions in order to understand the spatial development of dynamical structures. In particular, synchronized visualizations in two parallel planes picture the transverse development of the flow. The study is conducted by changing the cavity aspect ratio, the Reynolds number and therefore the flow patterns inside the cavity. The issue is to emphasize the 3-D development of the flow. In particular, we show that the dynamical structures are not due to secondary shear layer instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

plate length upstream of the cavity

B :

plate length downstream of the cavity

D :

wind tunnel height

:

Görtler number

H :

cavity height

k :

wave number

L :

cavity length

R :

aspect ratio

r c :

curvature radius

Re :

Reynolds number

S :

wind tunnel span

t :

time

U c :

convection velocity inside the cavity

U e :

external velocity

(x, y, z):

Cartesian coordinates

Δ:

difference

δ:

boundary layer thickness inside the cavity

δ2 :

momentum thickness inside the cavity

Λ:

dimensionless coefficient

λ:

wavelength

ν:

kinematics viscosity

References

  • Beaudoin JF, Cadot O, Aider JL, Weisfreid JE (2004) Three-dimensional stationary flow over a backward-facing step. Eur J Mech B Fluids 23:147–155

    MATH  Google Scholar 

  • Bilanin AJ, Covert EE (1973) Estimation of possible excitation frequencies for shallow rectangular cavities. AIAA J 11(3):347–351

    Google Scholar 

  • Bippes H (1972) Experimentelle Untersuchung des laminar-turbulenten Umschlags an einer parallel angeströmten könkaven Wand. Heidel. Akad. Wiss. Naturwiss. Kl. 3:103 (also NASA TM-75243, 1978)

  • Chang CH, Meroney RN (2003a) The effect of surroundings with different separation distances on surface pressures on low-rise buildings. J Wind Eng Ind Aerodyn 91:1039–1050

    Article  Google Scholar 

  • Chang CH, Meroney RN (2003b) Concentration and flow distributions in urban street canyons: wind tunnel and computational data. J Wind Eng Ind Aerodyn 91:1141–1154

    Article  Google Scholar 

  • Chatellier L, Laumonier J, Gervais Y (2004) Theoretical and experimental investigations of low Mach number turbulent cavity flows. Exp Fluids 36:728–740

    Article  Google Scholar 

  • Chung KM (2001) Three-dimensional effect on transonic rectangular cavity flows. Exp Fluids 30:531–536

    Article  Google Scholar 

  • Dezsö-Weidinger G, Stitou A, Van Beeck J, Riethmuller ML (2003) Measurements of the turbulent mass flux with PTV in a street canyon. J Wind Eng Ind Aerodyn 91:1117–1131

    Article  Google Scholar 

  • Fang LC, Nicolaou D, Cleaver JW (1999) Transient removal of a contaminated fluid from a cavity. Int J Heat Fluid Flow 20:605–613

    Article  Google Scholar 

  • Floryan JM, Saric WC (1982) Stability of Görtler vortices in boundary layers. AIAA J 20(3):316–324

    MathSciNet  MATH  Google Scholar 

  • Forestier N, Jacquin L, Geffroy P (2003) The mixing layer over a deep cavity at high-subsonic speed. J Fluid Mech 475:101–145

    Article  MATH  Google Scholar 

  • Geveci M, Oshkai P, Rockwell D, Lin JC, Pollack M (2003) Imaging of the self excited oscillation of flow past a cavity during generation of a flow tone. J Fluids Struct 18:665–694

    Article  Google Scholar 

  • Gharib M, Roshko A. (1987) The effect of flow oscillations on cavity drag. J Fluid Mech 177:501–530

    Article  Google Scholar 

  • Ghia U, Ghia KN, Shin CT (1982) High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411

    Article  MATH  Google Scholar 

  • Grace SM, Dewar WG, Wroblewski DE (2004) Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers. Exp Fluids 36:791–804

    Article  Google Scholar 

  • Guermond JL, Migeon C, Pineau G, Quartapelle L (2002) Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. J Fluid Mech 450:169–199

    MathSciNet  MATH  Google Scholar 

  • Hall P (1983) The linear development of Görtler vortices in growing boundary layers. J Fluid Mech 130:41–58

    Article  MathSciNet  MATH  Google Scholar 

  • Heller HH, Bliss B (1975) The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. AIAA Paper 75–491, 2nd Aeroacoustics Conference, Hampton

  • Howe MS (2003) Mechanism of sound generation by low Mach number flow over a wall cavity. J Sound Vib 273:103–123

    Article  Google Scholar 

  • Huerre P, Rossi M (1998) Hydrodynamic instabilities in open flows. In: Godrèche C, Manneville P (eds) Hydrodynamics and nonlinear instabilities. Cambridge University Press, pp 81–294

  • Kegerise MA, Spina EF, Garg GS, Cattafesta LN III (2004) Mode-switching and nonlinear effects in compressible flow over a cavity. Phys Fluids 16(3):678–687

    Article  Google Scholar 

  • Komerath NM, Ahuja KK, Chambers FW (1987) Prediction and measurement of flows over cavities—a survey. AIAA Paper 87–0166

  • Koseff JR, Street RL (1984) Visualization studies of a shear driven three-dimensional recirculating flow. J Fluids Eng 106:21–29

    Article  Google Scholar 

  • Kuo CH, Chang CW (1998) Shear-layer characteristics across a cavity with a horizontal top plate. Fluid Dyn Res 22:89–104

    Article  Google Scholar 

  • Kuo CH, Jeng WI (2003) Lock-on characteristics of a cavity shear layer. J Fluids Struct 18:715–728

    Article  Google Scholar 

  • Larchevêque L, Sagaut P, Lê TH, Comte P (2004) Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J Fluid Mech 516:265–301

    Article  MATH  Google Scholar 

  • Lin JC, Rockwell D (2001) Organized oscillations of initially turbulent flow past a cavity. AIAA J 39(6):1139–1151

    Google Scholar 

  • Mendoza JM, Ahuja KK (1995) The effect of width on cavity noise. J Aircr 14(9):833–837

    Google Scholar 

  • Migeon C (2002) Details on the start-up development of the Taylor-Görtler-like vortices inside a square-section lid-driven cavity for 1,000 ≤ Re ≤ 3,200. Exp Fluids 33:594–602

    Google Scholar 

  • Migeon C, Pineau G, Texier A (2003) Three-dimensionality development inside standard parallelepipedic lid-driven cavities at Re = 1000. J Fluids Struct 17:717–738

    Article  Google Scholar 

  • Pastur L, Westra MT, Van de Water W (2003) Sources and sinks in 1D travelling waves. Physica D 174:71–83

    Article  MATH  Google Scholar 

  • Rockwell D (1983) Oscillations of impinging shear layers. AIAA J 21(5):645–664

    Google Scholar 

  • Rockwell D, Naudascher E (1978) Review self-sustained oscillations of flow past cavities. J Fluids Eng 100:152–165

    Google Scholar 

  • Rossiter JE (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda 3438

  • Rowley CW, Colonius T, Basu AJ (2002) On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J Fluid Mech 455:315–346

    Article  MathSciNet  MATH  Google Scholar 

  • Sarohia V (1977) Experimental investigation of oscillations in flows over shallow cavities. AIAA J 15(7):984–991

    Article  Google Scholar 

  • Swearingen JD, Blackwelder RF (1987) The growth and breakdown of streamwise vortices in the presence of a wall. J Fluid Mech 182:255–290

    Article  Google Scholar 

  • Tam CKW, Block PJW (1978) On the tones and pressure oscillations induced by flow over rectangular cavities. J Fluid Mech 89:373–399

    Article  MathSciNet  Google Scholar 

  • Tani I (1962) Production of longitudinal vortices in the boundary layer along a concave wall. J Geophys Res 67:3075–3080

    Article  Google Scholar 

  • Umesh Chandra B, Chakravarthy SR (2005) Experimental investigation of cavity-induced acoustic oscillations in confined supersonic flow. J Fluids Eng 127:761–769

    Article  Google Scholar 

  • Van Hecke M, Storm C, Van Saarloos W (1999) Sources, sinks and wavenumber selection in coupled CGL equations and implications for counterpropagating wave systems. Physica D 134:1–47

    Article  MathSciNet  MATH  Google Scholar 

  • Winoto SH, Crane RI (1980) Vortex structure in laminar boundary layers on a concave wall. Int J Heat Fluid Flow 2:221–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry M. Faure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, T.M., Adrianos, P., Lusseyran, F. et al. Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp Fluids 42, 169–184 (2007). https://doi.org/10.1007/s00348-006-0188-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-006-0188-8

Keywords

Navigation