Skip to main content
Log in

Time-resolved stereo PIV measurements of shock–boundary layer interaction on a supercritical airfoil

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adamson TC Jr, Messiter AF (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Ann Rev Fluid Mech 12:103–138

    Article  MathSciNet  Google Scholar 

  • Amecke J (1985) Direkte Berechnung von Wandinterferenzen und Wandadaption bei zweidimensionaler Strömung in Windkanälen mit geschlossenen Wänden. DFVLR-FB, pp 85–62

  • Binion TW (1988) Potentials for pseudo-reynolds number effects. In: Reynolds number effects in transonic flow. AGARDograph vol 303, sect. 4

  • Brunet V, Deck S, Jacquin L, Molton P (2006) Transonic buffet investigations using experimental and des techniques. In: Proceedings of the 7th ONERA-DLR aerospace symposium ODAS 2006, Toulouse, France. ONERA-TP-2006-165

  • Deck S (2005) Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J 43(7):1556–1566

    Article  Google Scholar 

  • Délery JM (1985) Shock wave/turbulent boundary layer interaction and its control. Progr Aerosp Sci 22:209–280

    Article  Google Scholar 

  • Délery J, Marvin JG (1986) Shock-wave boundary layer interactions. AGARDograph 280:90–108

    Google Scholar 

  • Elsinga GE, van Oudheusden BW, Scarano F (2005) Evaluation of aero-optical distortion effects in PIV. Exp Fluids 39:246–256. doi:10.1007/s00348-005-1002-8

    Article  Google Scholar 

  • Finke K (1977) Stoßschwingungen in schallnahen Strömungen. VDI-Forschungsheft, vol 580. Verlag, Düsseldorf

    Google Scholar 

  • Geissler W (2003) Numerical study of buffet and transonic flutter on the NLR 7301 airfoil. Aerosp Sci Technol 7:540–550

    Article  MATH  Google Scholar 

  • Green JE (1970) Interactions between shock waves and turbulent boundary layers. Progr Aerosp Sci 11:235–340

    Article  Google Scholar 

  • Guntermann P (1992) Entwicklung eines Profilmodells mit variabler Geometrie zur Untersuchung des Transitions-verhaltens in kompressibler Unterschallströmung. Verlag, ISBN: 3-86111-365-1

  • Hartmann A, Steimle PC, Klaas M, Schröder W (2011) Time-resolved particle-image velocimetry of unsteady shock wave-boundary layer interaction. AIAA J 49(1):195–204. doi:10.2514/1.J050635

    Google Scholar 

  • Lee BHK (2001) Self-sustained shock oscillations on airfoils at transonic speeds. Progr Aerosp Sci 37:147–196

    Article  Google Scholar 

  • Lee BHK, Murty H, Jiang H (1994) Role of kutta waves on oscillatory shock motion on an airfoil. AIAA J 32(4):789–796

    Article  MATH  Google Scholar 

  • Melling A (1986) Seeding gas flows for laser anemometry. In: Proceedings on the conference of advanced instrumentation for aero engine components. AGARD CP-399, p 8.1

  • Pearcey HH, Osborne J, Haines AB (1968) The interaction between local effects at the shock and rear separation: a source of significant scale effects in wind-tunnel tests on aerofoils and wings. Transonic aerodynamics. AGARD-CP-35, pp 11.1–11.23

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Raveh DE, Dowell EH (2009) Frequency lock-in phenomenon in oscillating airfoils in buffeting transonic flows. International forum on aeroelasticity and structural dynamics. IFASD-2009-135

  • Romberg H-J (1990) Two-dimensional wall adaption in the transonic wind tunnel of the AIA. J Aircr 38(4):177–180

    Google Scholar 

  • Schewe G, Knipfer A, Mai H, Dietz G (2002) Experimental and numerical investigation of nonlinear effects in transonic flutter. German aerospace centre internal report DLR-IB 232-2002J 01

  • Seddon J (1960) The flow produced by interaction of a turbulent boundary layer with a normal shock wave of strength sufficient to cause separation. RAE TM Aero 667, R&M 3502

  • Stanewsky E, Delery J, Fulker J, de Matteis P (1997) Drag reduction by shock and boundary layer control. Results of the project EUROSHOCK, AER2-CT92-0049. Notes on numerical fluid mechanics, vol 56. Springer, Berlin

  • Tijdeman H (1965) Theoretical and experimental results for the dynamic response of pressure measuring systems. NLR-TR F.238

  • Tijdeman H (1977) Investigation on the transonic flow around oscillating airfoils. PhD thesis, NLR TR 77090 U, TU Delft, The Netherlands

  • Tropea C, Foss J, Yarin A (2007) Handbook of experimental fluid mechanics. Springer, Berlin

    Book  Google Scholar 

  • Tsai RY (1986) An efficient and accurate camera calibration technique for 3-D machine vision. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 364–374

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100. doi:10.1007/s00348-005-0016-6

    Article  Google Scholar 

  • Willert C (1997) Stereoscopic particle image velocimetry for application in wind tunnel flows. Meas Sci Technol 8:1465–1479

    Article  Google Scholar 

  • Xiao Q, Tsai HM (2006) Numerical study of transonic buffet on a supercritical airfoil. AIAA J 44(3):620–628

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft within the research project “Numerical and Experimental Analysis of Shock Oscillations at the Shock-Boundary-Layer Interaction in Transonic Flow, SCHR 309/40-1”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, A., Klaas, M. & Schröder, W. Time-resolved stereo PIV measurements of shock–boundary layer interaction on a supercritical airfoil. Exp Fluids 52, 591–604 (2012). https://doi.org/10.1007/s00348-011-1074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1074-6

Keywords

Navigation