Skip to main content
Log in

Three-dimensional structure of the flow inside the left ventricle of the human heart

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The laboratory models of the human heart left ventricle developed in the last decades gave a valuable contribution to the comprehension of the role of the fluid dynamics in the cardiac function and to support the interpretation of the data obtained in vivo. Nevertheless, some questions are still opened and new ones stem from the continuous improvements in the diagnostic imaging techniques. Many of these unresolved issues are related to the three-dimensional structure of the left ventricular flow during the cardiac cycle. In this paper, we investigated in detail this aspect using a laboratory model. The ventricle was simulated by a flexible sack varying its volume in time according to a physiologically shaped law. Velocities measured during several cycles on series of parallel planes, taken from two orthogonal points of view, were combined together in order to reconstruct the phase-averaged, three-dimensional velocity field. During the diastole, three main steps are recognized in the evolution of the vortical structures: (1) straight propagation in the direction of the long axis of a vortex ring originated from the mitral orifice; (2) asymmetric development of the vortex ring on an inclined plane; and (3) single vortex formation. The analysis of three-dimensional data gives the experimental evidence of the reorganization of the flow in a single vortex persisting until the end of the diastole. This flow pattern seems to optimize the cardiac function since it directs velocity towards the aortic valve just before the systole and minimizes the fraction of blood residing within the ventricle for more cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akutsu T, Imai R, Deguchi Y (2005) Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J Artif Organs 8(3):161–170

    Article  Google Scholar 

  • Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688

    Article  Google Scholar 

  • Baccani B, Domenichini F, Pedrizzetti G, Tonti G (2002) Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J Biomech 35(5):665–671

    Article  Google Scholar 

  • Balducci A, Grigioni M, Querzoli G, Romano GP, Daniele C, D’Avenio G, Barbaro V (2004) Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp Fluids 36(1):204–213

    Article  Google Scholar 

  • Bellhouse BJ (1972) Fluid mechanics of a model mitral valve and left ventricle. Card Res 6(2):199–210

    Article  MathSciNet  Google Scholar 

  • Belohlavek M (2012) Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency? Eur Heart J Cardiovasc Imaging 13(5):367–369

    Article  Google Scholar 

  • Benenstein R, Saric M (2012) Mitral valve prolapse: role of 3D echocardiography in diagnosis. Curr Opin Cardiol 27(5):465–476

    Google Scholar 

  • Brucker C, Steinseifer U, Schroder W, Reul H (2002) Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas Sci Technol 13:1043–1049

    Article  Google Scholar 

  • Cenedese A, Mele P (1978) Analisi sperimentale degli sforzi di Reynolds mediante anemometria laser. L’Energia Elettrica 2:53–58

    Google Scholar 

  • Cenedese A, Del Prete Z, Miozzi M, Querzoli G (2005) A laboratory investigation of the flow in the left ventricle of the human heart with prosthetic, tilting-disk valves. Exp Fluids 39(2):322–335

    Article  Google Scholar 

  • Cooke J, Hertzberg J, Boardman M, Shandas R (2004) Characterizing vortex ring behaviour during ventricular filling with Doppler echocardiography: an in vitro study. Ann Biomed Eng 32(2):245–256

    Article  Google Scholar 

  • Coon PD, Pollard H, Furlong K, Lang RM, Mor-Avi V (2012) Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol 38(11):1853–1858

    Article  Google Scholar 

  • Dabiri JO (2009) Optimal vortex formation as a unifying principle in biological propulsion. Ann Rev Fluid Mech 41:17–33

    Article  MathSciNet  Google Scholar 

  • Dabiri JO, Gharib M (2004) Fluid entrainment by isolated vortex rings. J Fluid Mech 511:311–331

    Google Scholar 

  • Doenst T, Spiegel K, Reik M, Markl M, Hennig J, Nitzsche S, Beyersdorf F, Oertel H (2009) Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann Thorac Surg 87:1187–1195

    Article  Google Scholar 

  • Domenichini F, Pedrizzetti G, Baccani B (2005) Three-dimensional filling flow into a model left ventricle. J Fluid Mech 539:179–198

    Article  MathSciNet  MATH  Google Scholar 

  • Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12(1):9

    Article  Google Scholar 

  • Espa S, Bada MG, Fortini S, Querzoli G, Cenedese A (2012) A Lagrangian investigation of the flow inside the left ventricle. Eur J Mech B Fluids 35:9–19

    Article  Google Scholar 

  • Grigioni M, Daniele C, D’Avenio G, Barbaro V (2002) Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J Biomech 35:1613–1622

    Article  Google Scholar 

  • Haugen BO, Berg S, Brecke KM, Samstad SO, Slørdahl SA, Skjærpe T, Torp H (2000) Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate. Eur J Echocardiogr 1(4):252–256

    Article  Google Scholar 

  • Ismeno G, Renzulli A, Carozza A, De Feo M, Iannuzzi M, Sante P, Cotrufo M (1999) Intravascular hemolysis after mitral and aortic valve replacement with different types of mechanical prostheses. Int J Cardiol 69(2):179–183

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285(69):69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Kilner PJ, Yang GZ, Wilkes AJ, Mohladin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404(6779):759–761

    Article  Google Scholar 

  • Lemmon JD, Yoganathan AP (2000) Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J Biomech Eng 122(4):297–303

    Article  Google Scholar 

  • Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45(4):813–825

    Article  Google Scholar 

  • Miozzi M, Jaacob B, Olivieri A (2008) Performances of feature tracking in turbulent boundary layer investigation. Exp Fluids 45:765–780

    Article  Google Scholar 

  • Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D (2008) Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAJO J 54(1):64–72

    Article  Google Scholar 

  • Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101

    Article  Google Scholar 

  • Pierrakos O, Vlachos PP, Telionis DP (2005) Time-Resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. J Biomech Eng 126(6):714–726

    Article  Google Scholar 

  • Poelma C, van der Mijle RME, Mari JM, Tang M-X, Weinberg PD, Westerweel J (2011) Ultrasound imaging velocimetry: toward reliable wall shear stress measurements. Eur J Mech B Fluids 35:70–75

    Article  Google Scholar 

  • Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22(4):041901–041910

    Article  Google Scholar 

  • Reul H, Talukder N, Muller W (1981) Fluid mechanics of the natural mitral valve. J Biomech 14(5):361–372

    Article  Google Scholar 

  • Romano GP, Querzoli G, Falchi M (2009) Investigation of vortex dynamics downstream of moving leaflets using robust image velocimetry. Exp Fluids 47:827–838

    Article  Google Scholar 

  • Saber NR, Gosman AD, Wood NB, Kilner PJ, Charrier CL, Firmin DN (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29(4):275–283

    Article  Google Scholar 

  • Schenkel T, Malve M, Reik M, Markl M, Jung B, Oertel H (2009) MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann Biomed Eng 37(3):503–515

    Article  Google Scholar 

  • Sengupta PP, Pedrizzetti G, Kilner PJ, Kheradvar A, Ebbers T, Tonti G, Fraser AG, Narula J (2012) Emerging trends in CV flow visualization. JACC Cardiovasc Imaging 5(3):305–316

    Article  Google Scholar 

  • Steen T, Steen S (1994) Filling of a model left ventricle studied by colour M mode Doppler. Cardiovasc Res 28(12):1821–1827

    Article  Google Scholar 

  • Töger J, Kansky M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662

    Article  Google Scholar 

  • Vasan RS, Levy D (2000) Defining diastolic heart failure. Circulation 101:2118–2121

    Article  Google Scholar 

  • Verzicco R, Orlandi P (1994) Normal and oblique collisions of a vortex ring with wall. Meccanica 29:383–391

    Article  MATH  Google Scholar 

  • Vierendeels JA, Dick E, Verdonck PR (2002) Hydrodynamics of color M-mode Doppler flow wave propagation velocity V(p): a computer study. J Am Soc Echocardiogr 15(3):219–224

    Article  Google Scholar 

  • Vukicevic M, Fortini S, Querzoli G, Espa S, Pedrizzetti G (2012) Experimental study of the asymmetric heart valve prototype. Eur J Mech B Fluids 35:54–60

    Article  Google Scholar 

  • Wieting DW, Stripling TE (1984) Dynamics and fluid dynamics of the mitral valve. In: Duran C, Angell WW, Johnson AD, Oury JH (eds) Recent progress in mitral valve disease. Butterworths Publishers, London, pp 13–46

    Chapter  Google Scholar 

  • Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41(4):793–799

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Ministero dell’Istruzione e della Ricerca Scientifica, PRIN 2009, Project No. 2009J7BL32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Querzoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortini, S., Querzoli, G., Espa, S. et al. Three-dimensional structure of the flow inside the left ventricle of the human heart. Exp Fluids 54, 1609 (2013). https://doi.org/10.1007/s00348-013-1609-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1609-0

Keywords

Navigation