Skip to main content
Log in

Spectral analysis of fluid flows using sub-Nyquist-rate PIV data

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Spectral methods are ubiquitous in the analysis of dynamically evolving fluid flows. However, tools like Fourier transformation and dynamic mode decomposition (DMD) require data that satisfy the Nyquist–Shannon sampling criterion. In many fluid flow experiments, such data are impossible to acquire. We propose a new approach that combines ideas from DMD and compressed sensing to accommodate sub-Nyquist-rate sampling. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed dataset and particle image velocimetry data from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving it to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Compressed sensing is also known as “compressive sampling” or “compressive sensing” and is closely related to “sparse approximation”/“sparse reconstruction”/“sparse recovery” methods.

  2. Though technically not a norm, the cardinality of a vector is often referred to as its \(\ell _0\) norm.

  3. We note that the convention in fluid mechanics is for each column of the snapshot matrix to correspond to an instant in time. For compressed sensing, the convention is reversed: each row of the signal matrix corresponds to a particular instant.

  4. Again, we use the compressed sensing convention: rows of \(A_r\) correspond to instants in time.

  5. We find that the POD modes do not differ much when computed from the time-resolved signal \(F\) versus the sampled signal \(G\).

  6. In practice, we would compute the POD modes using only the sampled data, and not the time-resolved data. However, for this flow, we do not expect the POD basis to change much if computed from the sampled data, due to the strong attraction of the dynamics onto the low-dimensional POD subspace.

References

  • Bai Z, Wimalajeewa T, Berger Z, Wang G, Glauser MN, Varshney PK (2014) A low dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J (accepted)

  • Baraniuk RG (2007) Compressive sensing. IEEE Signal Proc Mag 24(4):118–124

    Article  Google Scholar 

  • Belson BA, Tu JH, Rowley CW (2014) Algorithm 945: modred—a parallelized model reduction library. ACM Trans Math Softw 40(4):1–30

  • Brunton BW, Brunton SL, Proctor JL, Kutz JN (2013a) Optimal sensor placement and enhanced sparsity for classification. arXiv:1310.4217 [cs.CV]

  • Brunton SL, Proctor JL, Kutz JN (2013b) Compressive sampling and dynamic mode decomposition. arXiv:1312.5186v1 [math.DS]

  • Brunton SL, Tu JH, Bright I, Kutz JN (2013c) Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems. arXiv:1312.4221v1 [math.DS]

  • Bryan K, Leise T (2013) Making do with less: an introduction to compressed sensing. SIAM Rev 55(3):547–566

    Article  MathSciNet  MATH  Google Scholar 

  • Candès EJ (2008) The restricted isometry property and its implications for compressed sensing. C R Acad Sci Paris Sér I Math 346(9–10):589–592

    Article  MATH  Google Scholar 

  • Candès EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MATH  Google Scholar 

  • Candès EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  Google Scholar 

  • Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Proc Mag 25(2):21–30

    Article  Google Scholar 

  • Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MATH  Google Scholar 

  • Chen J, Huo X (2006) Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans Signal Process 54(12):4634–4643

    Article  Google Scholar 

  • Chen KK, Tu JH, Rowley CW (2012) Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J Nonlinear Sci 22(6):887–915

    Article  MathSciNet  MATH  Google Scholar 

  • Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38(5):826–844

    Article  Google Scholar 

  • Cotter SF, Rao BD, Engan K, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53(7):2477–2488

    Article  MathSciNet  Google Scholar 

  • Dick C, Harris F, Rice M (2000) Synchronization in software radios—carrier and timing recovery using FPGAs. In: Proceedings of the 2000 IEEE symposium on field-programmable custom computing machines, IEEE, pp 195–204

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) Single-pixel imaging via compressive sampling. IEEE Signal Proc Mag 25(2):83–91

    Article  Google Scholar 

  • Eldar YC, Mishali M (2009) Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory 55(11):5302–5316

    Article  MathSciNet  Google Scholar 

  • Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59(2):365–373

    Article  Google Scholar 

  • Grant M, Boyd SP (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd SP, Kimura H (eds) Recent advances in learning and control. Lecture notes in control and information sciences, vol 371, Springer, pp 95–110.

  • Grant M, Boyd SP (2012) CVX: Matlab software for disciplined convex programming, version 2.0 beta. http://cvxr.com/cvx,

  • Herman MA, Strohmer T (2009) High-resolution radar via compressed sensing. IEEE Trans Signal Process 57(6):2275–2284

    Article  MathSciNet  Google Scholar 

  • Jovanović MR, Schmid PJ, Nichols JW (2014) Sparsity-promoting dynamic mode decomposition. Phys Fluids 26(2):024103

  • Levy S, Fullagar PK (1981) Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics 46(9):1235–1243

    Article  Google Scholar 

  • Lustig M, Donoho DL, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  Google Scholar 

  • Malioutov D, Çetin M, Willsky AS (2005) A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans Signal Process 53(8, 2):3010–3022.

  • Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon A 26(3):301–321

    Article  MathSciNet  MATH  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47(2):617–644

    Google Scholar 

  • Oldenburg DW, Scheuer T, Levy S (1983) Recovery of the acoustic-impedance from reflection seismograms. Geophysics 48(10):1318–1337

    Article  Google Scholar 

  • Potter LC, Ertin E, Parker JT, Çetin M (2010) Sparsity and compressed sensing in radar imaging. Proc IEEE 98(6):1006–1020

    Article  Google Scholar 

  • Romberg J (2008) Imaging via compressive sampling. IEEE Signal Proc Mag 25(2):14–20

    Article  Google Scholar 

  • Rowley CW (2005) Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurcat Chaos 15(3):997–1013

    Article  MathSciNet  MATH  Google Scholar 

  • Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Santosa F, Symes WW (1986) Linear inversion of band-limited reflection seismograms. SIAM J Sci Stat Comput 7(4):1307–1330

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc IRE 37(1):10–21

    Article  MathSciNet  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures part II: symmetries and transformations. Q Appl Math 45(3):573–582

    MathSciNet  Google Scholar 

  • Taubman DS, Marcellin MW (2001) JPEG 2000: image compression fundamentals, standards and practice. Kluwer, Norwell, MA

    Google Scholar 

  • Taylor HL, Banks SC, McCoy JF (1979) Deconvolution with the \(\ell _1\) norm. Geophysics 44(1):39–52

    Article  Google Scholar 

  • Tropp JA (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory 50(10):2231–2242

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process 86(3):589–602

    MathSciNet  MATH  Google Scholar 

  • Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp JA, Gilbert AC, Strauss MJ (2006) Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process 86(3):572–588

    MATH  Google Scholar 

  • Tu JH, Griffin J, Hart A, Rowley CW, Cattafesta LN III, Ukeiley LS (2013a) Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp Fluids 54(2):1429. doi:10.1007/s00348-012-1429-7

  • Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN (2013b) On dynamic mode decomposition: theory and applications. arXiv:1312.0041v1 [math.NA].

  • Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal 31(2):210–227

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from the AFOSR and the NSF and thank Steve Brunton for many insightful discussions regarding compressed sensing in the context of dynamical systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J.H., Rowley, C.W., Kutz, J.N. et al. Spectral analysis of fluid flows using sub-Nyquist-rate PIV data. Exp Fluids 55, 1805 (2014). https://doi.org/10.1007/s00348-014-1805-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1805-6

Keywords

Navigation