Skip to main content
Log in

On PIV random error minimization with optimal POD-based low-order reconstruction

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Random noise removal from particle image velocimetry (PIV) data and spectra is of paramount importance, especially for the computation of derivative quantities and spectra. Data filtering is critical, as a trade-off between filter effectiveness and spatial resolution penalty should be found. In this paper, a filtering method based on proper orthogonal decomposition and low-order reconstruction (LOR) is proposed. The existence of an optimal number of modes based on the minimization of both reconstruction error and signal withdrawal is demonstrated. A criterion to perform the choice of the optimal number of modes is proposed. The method is validated via synthetic and real experiments. As prototype problems, we consider PIV vector fields obtained from channel flow DNS data and from PIV measurement in the wake of a circular cylinder. We determine the optimal number of modes to be used for the LOR in order to minimize the statistical random error. The results highlight a significant reduction in the measurement error. Dynamic velocity range is enhanced, enabling to correctly capture spectral information of small turbulent scales down to the half of the cutoff wavelength of original data. In addition to this, the capability of detecting coherent structures is improved. The robustness of the method is proved, both for low signal-to-noise ratios and for small-sized ensembles. The proposed method can significantly improve the physical insight into the investigation of turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adrian RJ (1991) Particle-image techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Adrian RJ, Westerweel J (2011) Particle image velocimetry, vol 30. Cambridge University Press, Cambridge

    Google Scholar 

  • Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290

    Article  Google Scholar 

  • Astarita T (2006) Analysis of interpolation schemes for image deformation methods in PIV: effect of noise on the accuracy and spatial resolution. Exp Fluids 40:977–987

    Article  Google Scholar 

  • Astarita T (2007) Analysis of weighting windows for image deformation methods in PIV. Exp Fluids 43:859–871

    Article  Google Scholar 

  • Bergmann M, Cordier L, Brancher JP (2005) Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys Fluids 17:097101. doi:10.1063/1.2033624

    Article  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276

    Article  Google Scholar 

  • Ceglia G, Discetti S, Ianiro A, Michaelis D, Astarita T, Cardone G (2014) Three-dimensional organization of the flow structure in a non-reactive model aero engine lean burn injection system. Exp Therm Fluid Sci 52:164–173

    Article  Google Scholar 

  • Cierpka C, Lütke B, Kähler CJ (2013) Higher order multi-frame particle tracking velocimetry. Exp Fluids 54:1–12. doi:10.1007/s00348-013-1533-3

    Article  Google Scholar 

  • Everson R, Sirovich L (1995) Karhunenloeve procedure for gappy data. J Opt Soc Am 12:165764

    Article  Google Scholar 

  • Fahl M (2000) Trust-region methods for flow controlbased on reduced order modeling. PhD dissertation, Trier University, Trier, Germany

  • Giordano R, Ianiro A, Astarita T, Carlomagno GM (2012) Flow field and heat transfer on the base surface of a finite circular cylinder in crossflow. Appl Therm Eng 49:79–88

    Article  Google Scholar 

  • Graham J, Lee M, Malaya N, Moser R, Eyink G, Meneveau C, Kanov K, Burns R, Szalay A (2013) Turbulent channel flow data set, http://turbulence.pha.jhu.edu/docs/README-CHANNEL.pdf

  • Guo S, Wu X, Li Y (2006) On the lower bound of reconstruction error for spectral filtering based privacy preserving data mining. In: Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases, Berlin, Germany

  • Heikkila J (2000) Geometric camera calibration using circular control points. IEEE Trans Pattern Anal Mach Intell 22(10):1066–1077

    Article  MathSciNet  Google Scholar 

  • Hong J, Katz J, Meneveau C, Schultz M (2012) Coherent structures and associated subgrid-scale energy transfer in a rough-wall turbulent channel flow. J Fluid Mech 712:92–128. doi:10.1017/jfm.2012.403

    Article  MATH  MathSciNet  Google Scholar 

  • Huang HT, Dabiri D, Gharib M (1997) On errors of digital particle image velocimetry. Meas Sci Technol 8:142740

    Article  Google Scholar 

  • Huang Z, Du W, Chen B (2005) Deriving private information from randomized data. In: Proceeding of the ACM SIGMOD conference of management of data, Baltimore, BA

  • Kargupta H, Datta S, Wang Q, Sivakumar K (2003) On the privacy preserving properties of random data perturbation techniques. In: Proceedings of the 3rd international conference on data mining, pp 99–193

  • Li Y, Perlman E, Wan M, Yang Y, Meneveau C, Burns R, Chen S, Szalay A, Eyink G (2008) A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J Turbul 9:N31. doi:10.1080/14685240802376389

    Article  Google Scholar 

  • Liu Z, Adrian RJ, Hanratty TJ (2001) Large-scale modes of turbulent channel flow: transport and structure. J Fluid Mech 448:53–80. doi:10.1017/S0022112001005808

    Article  MATH  Google Scholar 

  • Marchenko VA, Pastur LA (1967) Distribution of eigenvalues for some sets of random matrices. Mat Sb (NS) 72(114):507–536

    Google Scholar 

  • Neal DR, Sciacchitano A, Smith BL, Scarano F (2015) Collaborative framework for piv uncertainty quantification: the experimental database. Meas Sci Technol 26

  • Novara M, Scarano F (2013) A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp Fluids 54:1–12. doi:10.1007/s00348-013-1584-5

    Article  Google Scholar 

  • Raben SG, Charonko J, Vlachos PP (2012) Adaptive gappy proper ortogonal decomposition for particle image velocimetry data reconstruction. Meas Sci Technol 23(025):303

    Google Scholar 

  • Ravindran S (2000) Reduced-order adaptive controllers for fluid flows using POD. J Sci Comput 15:457–478. doi:10.1023/A:1011184714898

    Article  MATH  MathSciNet  Google Scholar 

  • Scarano F (2003) Theory of non-isotropic spatial resolution in PIV. Exp Fluids 35:26877

    Article  Google Scholar 

  • Schiavazzi D, Coletti F, Iaccarino G, Eaton JK (2014) A matching pursuit approach to solenoidal filtering of three-dimensional velocity measurements. J Comput Phys 263:206–221. doi:10.1016/j.jcp.2013.12.049

    Article  MathSciNet  Google Scholar 

  • Sciacchitano A, Scarano F, Wieneke B (2012) Multi-frame pyramid correlation for time-resolved PIV. Exp Fluids 53:1087105

    Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures: I, II, III. Q Appl Math 45:561–590

    MATH  MathSciNet  Google Scholar 

  • Stewart G (2001) Matrix algorithms volume 2: eigensystems, vol 2. SIAM, Philadelphia

    Book  Google Scholar 

  • Venturi D (2006) On proper orthogonal decomposition of randomly perturbed fields with applications to flow past a cylinder and natural convection over a horizontal plate. J Fluid Mech 559:215–254. doi:10.1017/S0022112006000346

    Article  MATH  MathSciNet  Google Scholar 

  • Venturi D, Karniadakis GE (2004) Gappy data and reconstruction procedures for flow past a cylinder. J Fluid Mech 519:315–336. doi:10.1017/S0022112004001338

    Article  MATH  MathSciNet  Google Scholar 

  • Violato D, Ianiro A, Cardone G, Scarano F (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Flow 37:22–36

    Article  Google Scholar 

  • Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data sets. Exp Fluids 16:23647

    Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:137992

    Article  Google Scholar 

  • Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29:S312

    Article  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096100

    Article  Google Scholar 

  • Westerweel J, Elsinga GE, Adrian RJ (2013) Particle image velocimetry for complex and turbulent flows. Annu Rev Fluid Mech 45:409–436

    Article  MathSciNet  Google Scholar 

  • Yu H, Kanov K, Perlman E, Graham J, Frederix E, Burns R, Szalay A, Eyink G, Meneveau C (2012) Studying lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database. J Turbul 13:N12. doi:10.1080/14685248.2012.674643

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Carlos Cobos for contributing the realization of the experimental setup, Prof. J. Rodriguez for providing the laser and Lasing S.A. for providing the Andor cameras used in the validation experiment. The authors wish also to thank Dr. A. Sciacchitano for insightful discussions on the validation experiment. This work has been partially supported by grant TRA2013-41103-P of the Spanish Ministry of Economy and Competitiveness. This grant includes FEDER funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Raiola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raiola, M., Discetti, S. & Ianiro, A. On PIV random error minimization with optimal POD-based low-order reconstruction. Exp Fluids 56, 75 (2015). https://doi.org/10.1007/s00348-015-1940-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1940-8

Keywords

Navigation