Skip to main content
Log in

Sound source mechanisms in under-expanded impinging jets

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Experiments on the aeroacoustics of an under-expanded supersonic jet impinging on a flat plate are presented and thoroughly discussed. A wide range of nozzle pressure ratios and of nozzle-to-plate distances has been analyzed with particular attention to the behavior of the discrete component of the noise. The investigation has been carried out by means of acoustic, particle image velocimetry and wall pressure measurements. The analysis of the relationship between the acoustic data and the fluid dynamic fields allows to examine the different source mechanisms of the discrete component of the noise and to evaluate the link between the jet flow structure and the acoustic tone features. Specifically, two ranges of nozzle pressure ratio have been observed showing different acoustic behaviors, characterized by distinct mechanisms of discrete noise generation. These regions are separated by a range of nozzle pressure ratios where impinging tones are not observed. The present experimental data extend previously published results, improving the analysis of the connection between fluid dynamic and acoustic fields and leading to a better comprehension of the impinging tone source mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alvi F, Ladd J, Bower W (2002) Experimental and computational investigation of supersonic impinging jets. AIAA J 40(4):599–609

    Article  Google Scholar 

  • Alvi FS, Iyer KG (1999) Mean and unsteady flowfield properties of supersonic impinging jets with lift plates. In: 5th AIAA/CEAS aeroacoustics conference

  • Carling JC, Hunt BL (1974) The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet. J Fluid Mech 66(1):159–176

    Article  MATH  Google Scholar 

  • Dhamanekar A, Srinivasan K (2014) Effect of impingement surface roughness on the noise from impinging jets. Phys Fluids 26(3):036101

    Article  Google Scholar 

  • Donaldson CD, Snedeker RS (1971) A study of free jet impingement. Part 1. Mean properties of free and impinging jets. J Fluid Mech 45(2):281–319

    Article  Google Scholar 

  • Erdem E, Saravanan S, Lin J, Kontis K (2012) Experimental investigation of transverse injection flowfield at mach 5 and the influence of impinging shock wave. In: 18th AIAA/3AF international space planes and hypersonic systems and technologies conference, Tours, France

  • Ginzburg IP, Semiletenko BG, Uskov VN (1975) Experimental study of underexpanded jets impinging normally on a plane baffle. Fluid Mech Sov Res 4:93–105

    Google Scholar 

  • Henderson B (2002) The connection between sound production and jet structure of the supersonic impinging jet. J Acoust Soc Am 111:735

    Article  Google Scholar 

  • Henderson B, Powell A (1993) Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J Sound Vib 168(2):307–326

    Article  Google Scholar 

  • Henderson B, Bridges J, Wernet M (2005) An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J Fluid Mech 542(1):115–137

    Article  MATH  Google Scholar 

  • Hirata M, Kukita Y, Nakatogawa T (1971) Disintegration of a supersonic jet impinging normally on a flat plate. J Spacecr Rockets 8(4):410–411

    Article  Google Scholar 

  • Ho CM, Nosseir NS (1981) Dynamics of an impinging jet. Part 1. The feedback phenomenon. J Fluid Mech 105:119–142

    Article  Google Scholar 

  • Hourigan K, Rudman M, Brocher E (1996) The feedback loop in impinging two-dimensional high-subsonic and supersonic jets. Exp Therm Fluid Sci 12(2):265–270

    Article  Google Scholar 

  • Hussein HJ, Capp SP, George WK (1994) Velocity measurements in a high-reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J Fluid Mech 258:31–75

    Article  Google Scholar 

  • Kalghatgi GT, Hunt BL (1976) The occurrence of stagnation bubbles in supersonic jet impingement flows. Aeronaut Q 27(3):169–185

    Google Scholar 

  • Kim SI, Park SO (2005) Oscillatory behavior of supersonic impinging jet flows. Shock Waves 14(4):259–272

    Article  MATH  Google Scholar 

  • Krothapalli A, Rajkuperan E, Alvi F, Lourenco L (1999) Flow field and noise characteristics of a supersonic impinging jet. J Fluid Mech 392(1):155–181

    Article  MATH  Google Scholar 

  • Kuo CY, Dowling AP (1996) Oscillations of a moderately underexpanded choked jet impinging upon a flat plate. J Fluid Mech 315(1):267–291

    Article  MATH  Google Scholar 

  • Lamont PJ, Hunt BL (1980) The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J Fluid Mech 100(03):471–511

    Article  Google Scholar 

  • Lavoie P, Avallone G, De Gregorio F, Romano GP, Antonia RA (2007) Spatial resolution of PIV for the measurement of turbulence. Exp Fluids 43(1):39–51

    Article  Google Scholar 

  • Levin DB, Wardwell DA (1997) Single jet-induced effects on small-scale hover data in ground effect. J Aircr 34(3):400–407

    Article  Google Scholar 

  • Margason RJ, Arledge TK, Wardwell DA, Hange C, Naumowicz T (1996)Jet efflux characteristics and their influence on stovl aircraftpropulsion-induced effects. Technical report, SAE Technical Paper

  • Marsh AH (1961) Noise measurements around a subsonic air jet impinging on a plane, rigid surface. J Acoust Soc Am 33(8):1065–1066

    Article  Google Scholar 

  • Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406

    Article  Google Scholar 

  • Mi J, Nobes DS, Nathan G (2001) Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J Fluid Mech 432:91–125

    MATH  Google Scholar 

  • Mitchell D, Honnery D, Soria J (2011) Particle relaxation and its influence on the particle image velocimetry cross-correlation function. Exp Fluids 51(4):933–947

    Article  Google Scholar 

  • Neuwerth G (1974) Acoustic feedback phenomena of the subsonic and hypersonic free jet impinging on a foreign body. Technical report, NASA TT F-15719

  • Powell A (1953a) On edge tones and associated phenomena. Acustica 3:233–243

    Google Scholar 

  • Powell A (1953b) On the mechanism of choked jet noise. Proc Phys Soc Sect B 66(12):1039

    Article  Google Scholar 

  • Powell A (1988) The sound-producing oscillations of round underexpanded jets impinging on normal plates. J Acoust Soc Am 83:515

    Article  Google Scholar 

  • Powell A, Umeda Y, Ishii R (1992) Observations of the oscillation modes of choked circular jets. J Acoust Soc Am 92:2823

    Article  Google Scholar 

  • Ragni D, Schrijer F, Van Oudheusden B, Scarano F (2011) Particle tracer response across shocks measured by PIV. Exp Fluids 50(1):53–64

    Article  Google Scholar 

  • Samimy M, Lele SK (1991) Motion of particles with inertia in a compressible free shear layer. Phys Fluids A Fluid Dyn 3:1915

    Article  Google Scholar 

  • Scarano F (2008) Overview of PIV in supersonic flows. In: Schroeder A, Willert CE (eds) Particle image velocimetry. New developments and recent applications. Springer, Berlin, pp 445–463

  • Sinibaldi G, Lacagnina G, Marino L, Romano GP (2013a) Aeroacoustics and aerodynamics of impinging supersonic jet: analysis of the screech tones. Phys Fluids 25:086104-1–086104-16

    Article  Google Scholar 

  • Sinibaldi G, Lacagnina G, Marino L, Romano GP (2013b) Analysis of the characteristic acoustic tones of an impinging jet. AIAA paper (2013–2090)

  • Tam CKW, Ahuja KK (1990) Theoretical model of discrete tone generation by impinging jets. J Fluid Mech 214(1):67–87

    Article  MathSciNet  Google Scholar 

  • Tam CKW, Seiner JM, Yu JC (1986) Proposed relationship between broadband shock associated noise and screech tones. J Sound Vib 110(2):309–321

    Article  Google Scholar 

  • Violato D, Scarano F (2011) Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids 23(12):124,104

    Article  Google Scholar 

  • Wagner FR (1971) The sound and flow field of an axially symmetric free jet upon impact on a wall. Technical report, NASA TT F-13942

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Sinibaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinibaldi, G., Marino, L. & Romano, G.P. Sound source mechanisms in under-expanded impinging jets. Exp Fluids 56, 105 (2015). https://doi.org/10.1007/s00348-015-1967-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1967-x

Keywords

Navigation