Skip to main content
Log in

Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing

  • Letter
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

For decades, the study of biomedical fluid dynamics using optical flow visualization and measurement techniques has been limited by the inability to fabricate transparent physical models that realistically replicate the complex morphology of biological lumens. In this study, we present an approach for producing optically transparent anatomical models that are suitable for particle image velocimetry (PIV) using a common 3D inkjet printing process (PolyJet) and stock resin (VeroClear). By matching the index of refraction of the VeroClear material using a room-temperature mixture of water, sodium iodide, and glycerol, and by printing the part in an orientation such that the flat, optical surfaces are at an approximately 45\(^{\circ }\) angle to the build plane, we overcome the challenges associated with using this 3D printing technique for PIV. Here, we summarize our methodology and demonstrate the process and the resultant PIV measurements of flow in an optically transparent anatomical model of the human inferior vena cava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aycock KI, Campbell RL, Lynch FC, Manning KB, Craven BA (2016) The importance of hemorheology and patient anatomy on the hemodynamics in the inferior vena cava. Ann Biomed Eng 44(12):3568–3582. doi:10.1007/s10439-016-1663-x. (ISSN: 1573-9686)

    Article  Google Scholar 

  • Aycock KI, Campbell RL, Manning KB, Craven BA (2017a) A resolved two-way coupled CFD/6-DOF approach for predicting embolus transport and the embolus-trapping efficiency of IVC filters. Biomech Model Mechanobiol 16(3):851–869. doi:10.1007/s10237-016-0857-3. (ISSN: 1617-7940)

    Article  Google Scholar 

  • Aycock KI, Campbell RL, Lynch FC, Manning KB, Craven BA (2017b) Computational predictions of the embolus-trapping performance of an IVC filter in patient-specific and idealized IVC geometries. Biomech Model Mechanobiol 1–13. doi:10.1007/s10237-017-0931-5. (ISSN: 1617-7940)

  • Bai K, Katz J (2014) On the refractive index of sodium iodide solutions for index matching in PIV. Exp Fluids 55(4). doi:10.1007/s00348-014-1704-x. (ISSN: 1432-1114)

  • Budwig R (1994) Refractive index matching methods for liquid flow investigations. Exp Fluids 17(5):350–355. doi:10.1007/bf01874416. (ISSN: 1432-1114)

  • Büsen M, Kaufmann TA, Neidlin M, Steinseifer U, Sonntag SJ (2015) In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV. J Biomech 48(10):2005–2011. doi:10.1016/j.jbiomech.2015.03.030. (ISSN: 0021-9290)

  • Butscher D, Hutter C, Kuhn S, von Rohr PR (2012) Particle image velocimetry in a foam-like porous structure using refractive index matching: a method to characterize the hydrodynamic performance of porous structures. Exp Fluids 53(4):1123–1132. doi:10.1007/s00348-012-1346-9. (ISSN: 1432-1114)

  • Charonko JJ, Vlachos PP (2013) Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas Sci Technol 24(6):065301. doi:10.1088/0957-0233/24/6/065301. (ISSN: 0957-0233)

    Article  Google Scholar 

  • Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F (2017) Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos B Eng 117:138–149

    Article  Google Scholar 

  • de Zélicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP (2005) Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 127(1):204. doi:10.1115/1.1835367. (ISSN 0148-0731)

  • Doorly D, Taylor DJ, Franke P, Schroter RC (2008) Experimental investigation of nasal airflow. Proc Inst Mech Eng Part H J Eng Med 222(4):439–453. doi:10.1243/09544119jeim330. (ISSN 2041-3033)

  • Ford MD, Nikolov HN, Milner JS, Lownie SP, DeMont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130(2):021015. doi:10.1115/1.2900724. (ISSN: 0148-0731)

  • Geoghegan PH, Buchmann NA, Spence CJT, Moore S, Jermy M (2012) Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp Fluids 52(5):1331–1347. doi:10.1007/s00348-011-1258-0. (ISSN 1432-1114)

  • Hopkins LM, Kelly JT, Wexler AS, Prasad AK (2000) Particle image velocimetry measurements in complex geometries. Exp Fluids 29(1):91–95. doi:10.1007/s003480050430. (ISSN: 1432-1114)

  • Ionita CN, Mokin M, Varble N, Bednarek DR, Xiang J, Snyder KV, Siddiqui AH, Levy EI, Meng H, Rudin S (2014) Challenges and limitations of patient-specific vascular phantom fabrication using 3D polyjet printing. In: SPIE medical imaging, International Society for optics and photonics, pp 90380M–90380M

  • Kim BJ, Ha H, Huh HK, Kim GB, Kim JS, Kim N, Lee S-J, Kang D-W, Kwon SU (2016) Post-stenotic recirculating flow may cause hemodynamic perforator infarction. J Stroke 18(1):66–72. doi:10.5853/jos.2015.01445. (ISSN: 2287-6405)

  • Kim SK, Chung SK (2004) An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV. Meas Sci Technol 15(6):1090–1096. doi:10.1088/0957-0233/15/6/007. (ISSN: 1361-6501)

  • Kumbhar NN, Mulay AV (2016) Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: a review. J Inst Eng (India) Ser C. doi:10.1007/s40032-016-0340-z. (ISSN: 2250-0553)

  • Lara M, Chen C-Y, Mannor P, Dur O, Menon PG, Yoganathan AP, Pekkan K (2011) Hemodynamics of the hepatic venous three-vessel confluences using particle image velocimetry. Ann Biomed Eng 39(9):2398–2416. doi:10.1007/s10439-011-0326-1. (ISSN: 1573-9686)

  • Lowe M, Kutt P (1992) Refraction through cylindrical tubes. Exp Fluids 13(5):315–320

    Article  Google Scholar 

  • Mediratta R, Ahluwalia K, Yeo SH (2015) State-of-the-art on vibratory finishing in the aviation industry: an industrial and academic perspective. Int J Adv Manuf Technol 85(1-4):415–429. doi:10.1007/s00170-015-7942-0. (ISSN: 1433-3015)

  • Narrow T, Yoda M, Abdel-Khalik S (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28(3):282–283

    Article  Google Scholar 

  • Park JS, Choi CK, Kihm KD (2004) Optically sliced micro-piv using confocal laser scanning microscopy (clsm). Exp Fluids 37(1):105–119. doi:10.1007/s00348-004-0790-6. (ISSN: 1432-1114)

  • Pekkan K, Zélicourt DD, Ge L, Sotiropoulos F, Frakes D, Fogel MA, Yoganathan AP (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33(3):284–300. doi:10.1007/s10439-005-1731-0. (ISSN: 1573-9686)

  • Rahbar E, Mori D, Moore JE (2011) Three-dimensional analysis of flow disturbances caused by clots in inferior vena cava filters. J Vasc Interv Radiol 22(6):835–842. doi:10.1016/j.jvir.2010.12.024. (ISSN 1051-0443)

  • Rumple C (2014) Particle image velocimetry measurements of flow in an anatomically-accurate scaled model of the rodent nasal cavity. Master’s thesis, The Pennsylvania State University

  • Song MS, Choi HY, Seong JH, Kim ES (2015) Matching-index-of-refraction of transparent 3D printing models for flow visualization. Nucl Eng Des 284:185–191. doi:10.1016/j.nucengdes.2014.12.019. (ISSN: 0029-5493)

  • Song MS, Park SH, Kim ES (2016) Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape. Fusion Eng Des 109–111: 596–601. doi:10.1016/j.fusengdes.2016.02.039. (ISSN: 0920-3796)

  • Williams RE, Melton VL (1998) Abrasive flow finishing of stereolithography prototypes. Rapid Prototyp J 4(2):56–67. doi:10.1108/13552549810207279. (ISSN: 1355-2546)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Gonzalo Mendoza from the Additive Manufacturing of Medical Products (AMMP) laboratory at the United States Food and Drug Administration (U.S. FDA) for printing the anatomical model and H. Steven Fatzinger at the Penn State Artificial Heart Laboratory for measuring the IOR of the index-matching fluid. We also thank Andrew Baumann, Keefe Manning, Robert Campbell, Michael Lawson, Mark Jaster, Bruce Fleharty, Randolph Bidinger, Frederick Jordan, and Christopher Rumple for helpful discussions. This study was funded by the U.S. FDA Center for Devices and Radiological Health (CDRH) Critical Path program. The research was supported in part by an appointment to the Research Participation Program at the U.S. FDA administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and FDA. The findings and conclusions in this article have not been formally disseminated by the U.S. FDA and should not be construed to represent any agency determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth I. Aycock or Brent A. Craven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aycock, K.I., Hariharan, P. & Craven, B.A. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp Fluids 58, 154 (2017). https://doi.org/10.1007/s00348-017-2403-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2403-1

Navigation