Skip to main content
Log in

Bubble nucleation from micro-crevices in a shear flow

Experimental determination of nucleation rates and surface nuclei growth

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The formation of gas bubbles at gas cavities located in walls bounding the flow occurs in many technical applications, but is usually hard to observe. Even though, the presence of a fluid flow undoubtedly affects the formation of bubbles, there are very few studies that take this fact into account. In the present paper new experimental results on bubble formation (diffusion-driven nucleation) from surface nuclei in a shear flow are presented. The observed gas-filled cavities are micrometre-sized blind holes etched in silicon substrates. We measure the frequency of bubble generation (nucleation rate), the size of the detaching bubbles and analyse the growth of the surface nuclei. The experimental findings support an extended understanding of bubble formation as a self-excited cyclic process and can serve as validation data for analytical and numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen A, Mørch KA (2015) Cavitation nuclei in water exposed to transient pressures. J Fluid Mech 771:424–448

    Article  MathSciNet  Google Scholar 

  • Atchley AA, Prosperetti A (1989) The crevice model of bubble nucleation. J Acoust Soc Am 86(3):1065–1084

    Article  Google Scholar 

  • Bankoff SG (1958) Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J 4(1):24–26

    Article  Google Scholar 

  • Bolanos-Jimenez R, Rossi M, Rivas DF, Kähler CJ, Marin A (2017) Streaming flow by oscillating bubbles: quantitative diagnostics via particle tracking velocimetry. J Fluid Mech 820:529–548

    Article  MathSciNet  Google Scholar 

  • Borkent BM, Gekle S, Prosperetti A, Lohse D (2009) Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys Fluids 21:102003

    Article  MATH  Google Scholar 

  • Bremond N, Arora M, Ohl CD, Lohse D (2005) Cavitation on surfaces. J Phys Condens Matter 17(45):S3603

    Article  MATH  Google Scholar 

  • Brennen CE (1995) Cavitation and bubble dynamics. Oxford engineering science series. Oxford University Press, New York

    Google Scholar 

  • Brennen CE (2015) Cavitation in medicine. Interface. Focus 5:20150022

    Google Scholar 

  • Chen D, Pan LM, Ren S (2012) Prediction of bubble detachment diameter in flow boiling based on force analysis. Nucl Eng Des 243:263–271

    Article  Google Scholar 

  • Duhar G, Colin C (2006) Dynamics of bubble growth and detachment in a viscous shear flow. Phys Fluids 18:077101

    Article  Google Scholar 

  • Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid–gas solutions. J Chem Phys 18:1505–1509. https://doi.org/10.1063/1.1747520

    Article  Google Scholar 

  • Fernandez Rivas D, Prosperetti A, Zijlstra A, Lohse D, Gardeniers HJGE (2010) Efficient sonochemistry through microbubbles generated with micromachined surfaces. Angew Chem 122(50):9893–9895

    Article  Google Scholar 

  • Freudigmann HA, Iben U, Dörr A, Pelz PF (2017) Modeling of cavitation-induced air release phenomena in micro-orifice flows. J Fluids Eng 139(11):111301

    Article  Google Scholar 

  • Fritz W (1935) Berechnung des maximalvolumens von dampfblasen. Phys Z 36:379–388

    Google Scholar 

  • Gelderblom H, Zijlstra AG, van Wijngaarden L, Prosperetti A (2012) Oscillations of a gas pocket on a liquid-covered solid surface. Phys Fluids 24:122101

    Article  Google Scholar 

  • Groß TF, Pelz PF (2017) Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation. J Fluid Mech 830:138–164

    Article  Google Scholar 

  • Groß TF, Ludwig G, Pelz PF (2015) Experimental evidence of nucleation from wall-bounded nuclei in a laminar flow. In: Proceedings of CAV 2015: 9th international symposium on cavitation, Lausanne

  • Groß TF, Ludwig G, Pelz PF (2016) Experimental and theoretical investigation of nucleation from wall-bounded nuclei in a laminar flow. In: Proceedings of the 16th international symposium on transport phenomena and dynamics of rotating machinery, Honolulu

  • Guzman DN, Hie Y, Chen S, Rivas DF, Sun C, Lohse D, Ahlers G (2016) Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence. J Fluid Mech 787:331–366

    Article  MathSciNet  MATH  Google Scholar 

  • Henry W (1803) Experiments on the quantity of gases absorbed by water at different temperatures and under different pressures. Philos Trans R Soc Lond 93:29–274. https://doi.org/10.1098/rstl.1803.0004

    Article  Google Scholar 

  • Jones SF, Evans GM, Galvin KP (1999a) Bubble nucleation from gas cavities—a review. Adv Colloid Interface Sci 80:27–50

    Article  Google Scholar 

  • Jones SF, Evans GM, Galvin KP (1999b) The cycle of bubble production from a gas cavity in a supersaturated solution. Adv Colloid Interface Sci 80:51–84

    Article  Google Scholar 

  • Liger-Belair G (2004) Uncorked: the science of Champagne. Princeton University Press, Princeton

    Google Scholar 

  • Liger-Belair G (2005) The physics and chemistry behind the bubbling properties of champagne and sparkling wines: a state-of-the-art review. J Agric Food Chem 53(8):2788–2802

    Article  Google Scholar 

  • van der Linde P, Moreno Soto Á, Peñas-López P, Rodriguez-Rodriguez J, Lohse D, Gardeniers H, van der Meer D, Rivas DF (2017) Electrolysis-driven and pressure-controlled diffusive growth of successive bubbles on microstructured surfaces. Langmuir. https://doi.org/10.1021/acs.langmuir.7b02978

  • Lochiel AC, Calderbank PH (1964) Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chem Eng Sci 19:471–484

    Article  Google Scholar 

  • Lohse D, Zhang X (2015) Surface nanobubbles and nanodroplets. Rev Mod Phys 87:981

    Article  MathSciNet  Google Scholar 

  • Moreno Soto Á, Prosperetti A, Lohse D, van der Meer D (2016) Gas depletion through single gas bubble diffusive growth and its effect on subsequent bubbles. APS Div Fluid Dyn Abstr D21:007

    Google Scholar 

  • Nahra HK, Kamonati Y (2003) Prediction of bubble diameter at detachment from a wall orifice in liquid cross-flow under reduced and normal gravity conditions. Chem Eng Sci 58:55–69

    Article  Google Scholar 

  • Neumann TS (2002) Arterial gas embolism and decompression sickness. Physiology 77(2):77–81

    Article  Google Scholar 

  • Nüllig M, Peters F (2013) Diffusion of small gas bubbles into liquid studied by the rotary chamber technique. Chem Ing Tech 85:1074–1079

    Article  Google Scholar 

  • Parkin BR, Kermeen RW (1963) The roles of convective air diffusion and liquid tensile stresses during cavitation inception. In: Proceedings of IAHR Symp. on Cav. and Hyd. Mach., Sendai

  • Peñas-López P, Parrales MA, Rodriguez-Rodriguez J, van der Meer D (2016) The history effect in bubble growth and dissolution. Part 1. theory. J Fluid Mech 800:180–212

    Article  MathSciNet  MATH  Google Scholar 

  • Peñas-López P, Moreno Soto Á, Parrales MA, van der Meer D (2017) The history effect in bubble growth and dissolution. Part 2. Experiments and simulations of a spherical bubble atached to a horizontal flat plate. J Fluid Mech 820:479–510

    Article  MathSciNet  Google Scholar 

  • Peters F, Honza R (2014) A benchmark experiment on gas cavitation. Exp Fluids 55:1786

    Article  Google Scholar 

  • Prosperetti A (2017) Vapor bubbles. Annu Rev Fluid Mech 49:221–48

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71–97

    Article  Google Scholar 

  • van Rijsbergen MX, van Terwisga TJC (2011) High-speed micro-scale observations of nuclei-induced sheet cavitation. In: WIMRC 3rd international cavitation forum 2011, Coventry.

  • Sarc A, Oder M, Dular M (2016) Can rapid pressure decrease induced by supercavitation efficiently eradicate Legionella pneumophila bacteria? Desalin Water Treat 57(5):2184–2194

    Article  Google Scholar 

  • Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10(1–2):1–13

    Article  Google Scholar 

  • Spiridonov EK (2015) Characteristics and calculation of cavitation mixers. Proced Eng 129:446–450

    Article  Google Scholar 

  • Verhaagen B, Fernandez Rivas D (2015) Measuring cavitation and its cleaning effect. Ultrason Sonochem 29:619–628

    Article  Google Scholar 

  • van Wijngaarden L (1967) On the growth of small cavitation bubbles by convective diffusion. Int J Heat Mass Transf 10(2):127–134

    Article  Google Scholar 

  • Zijlstra A, Fernandez Rivas D, Gardeniers HJGE, Versluis M, Lohse D (2015) Enhancing acoustic cavitation using artificial crevice bubbles. Ultrasonics 56:512–523

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr.-Ing. F. Peters (Ruhr-Universität Bochum) for the valuable hints regarding the experimental setup. The authors thank S. Schlautmann from the MCS group, University of Twente for his support in the micro fabrication processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Pelz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groß, T.F., Bauer, J., Ludwig, G. et al. Bubble nucleation from micro-crevices in a shear flow. Exp Fluids 59, 12 (2018). https://doi.org/10.1007/s00348-017-2459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2459-y

Navigation