Skip to main content
Log in

Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We investigated whether juvenile freshwater stingrays (Potamotrygon motoro) can solve spatial tasks by constructing a cognitive map of their environment. Two experimental conditions were run: allocentric and ego-allocentric. Rays were trained to locate food within a four-arm maze placed in a room with visual spatial cues. The feeding location (goal) within the maze (room) remained constant while the starting position varied for the allocentrically but not for the ego-allocentrically trained group. After training, all rays solved the experimental tasks; however, different orientation strategies were used within and between groups. Allocentrically trained rays reached the goal via novel routes starting from unfamiliar locations, while ego-allocentrically trained rays primarily solved the task on the basis of an egocentric turn response. Our data suggest that P. motoro orients by constructing a visual cognitive map of its environment, but also uses egocentric and/or other orientation strategies alone or in combination for spatial orientation, a choice which may be governed by the complexity of the problem. We conclude that spatial memory functions are a general feature of the vertebrate brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. a
Fig. b
Fig. c
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali MA, Anctil M (1974) Retinas of the electric ray (Narcine brasiliensis) and freshwater stingray (Paratrygon motoro). Vis Res 14:587–588

    Article  CAS  PubMed  Google Scholar 

  • Aronson LR (1951) Orientation and jumping behavior in the gobiid fish, Bathygobius soporator. Am Mus Novit 1486:1–22

    Google Scholar 

  • Aronson LR (1971) Further studies on orientation and jumping behaviour in the gobiid fish, Bathygobius Soporator. In: Adler HE (ed) Orientation: sensory bases. Ann N Y Acad Sci 188:378–392

    CAS  PubMed  Google Scholar 

  • Braithwaite VA (1998) Spatial memory, landmark use and orientation in fish. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 86–102

    Google Scholar 

  • Braithwaite VA, Armstrong JD, McAdam HM, Huntingford FA (1996) Can juvenile atlantic salmon use multiple cue systems in spatial learning? Anim Behav 51:1409–1415

    Article  Google Scholar 

  • Demski LS, Beaver JA (2001) Brain and cognitive function in teleost fish. In: Roth G, Wullimann MF (eds) Brain, evolution and cognition. Spektrum Verlag, Heidelberg, pp 297–332

    Google Scholar 

  • Dodd J, Gibson RN, Hughes RN (2000) Use of cues by Lipophrys pholis L (Teleostei, Blenniidae) in learning the position of a refuge. Behav Proc 49:69–75

    Article  Google Scholar 

  • Dodson JJ (1988) The nature and role of learning in the orientation and migratory behaviour of fishes. Environ Biol Fish 23:161–182

    Google Scholar 

  • Dücker G, Schrameyer C, Stascheit M (1979) Die Auswirkung der Übungsverteilung auf das Lernen und Vergessen bei Carassius auratus Linne). Z Tierphysiol 51:269–281

    Google Scholar 

  • Fremouw T, Jackson-Smith P, Kesner RP (1997) Impaired place learning and unimpaired cue learning in hippocampal-lesioned pigeons. Behav Neurosci 111:963–975

    CAS  PubMed  Google Scholar 

  • Goodyear CP (1973) Learned orientation in the predator avoidance behaviour of mosquitofish, Gambusia Affinis. Behav 45:191–223

    CAS  Google Scholar 

  • Graeber RC, Ebbesson SOE (1972) Visual discrimination learning in normal and tectal ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 42A:131–139

    Article  CAS  Google Scholar 

  • Hasler AD, Horrall RM, Wisby WJ, Braemer W (1958) Sun orientation and homing in fishes. Limnol Oceanogr 111:353–361

    Google Scholar 

  • Hawryshyn CW, Arnold MG, Bowering E, Cole RL (1990) Spatial orientation of rainbow trout to plane-polarized light: the ontogeny of E-vector discrimination and spectral sensitivity characteristics. J Comp Physiol A 166:565–574

    Article  Google Scholar 

  • Helfman GS, Schultz ET (1984) Social transmission of behavioural traditions in a coral reef fish. Anim Behav 32:379–384

    Google Scholar 

  • Helfman GS, Meyer JI, McFarland WN (1982) The ontogeny of twilight migration patterns in grunts (Pisces, Haemulidae). Anim Behav 30: 317–326

    Google Scholar 

  • Hughes RN, Blight CM (1999) Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze. Anim Behav 58:601–613

    Article  PubMed  Google Scholar 

  • Huntingford FA, Wright PJ (1989) How sticklebacks learn to avoid dangerous feeding patches. Behav Proc 19:181–189

    Article  Google Scholar 

  • Ingle DJ, Sahagian D (1973) Solution of a spatial constancy problem by goldfish. Physiol Psychol 1:83–84

    Google Scholar 

  • Jarrard LE, Okaichi H, Steward O, Goldschmidt RB (1984) On the role of hippocampal connections in the performance of place and cue tasks - comparisons with damage to hippocampus. Behav Neurosci 98:946–954

    Article  CAS  PubMed  Google Scholar 

  • Kesner RP, Olton OD (1990) Neurobiology of Comparative Cognition. Lawrence Erlbaum Associates, Hillsdale, pp 475

    Google Scholar 

  • Kleerekoper H, Timms AM, Westlake GF (1970) An analysis of locomotor behaviour of goldfish (Carassius auratus). Anim Behav 18:317

    Article  CAS  PubMed  Google Scholar 

  • Kleerekoper H, Matis J, Gensler P, Maynard P (1974) Exploratory behaviour of goldfish Carassius auratus. Anim Behav 22:124–132

    Google Scholar 

  • Lopez JC, Broglio C, Rodriguez F, Thinus-Blanc C, Salas C (1999) Multiple spatial learning strategies in goldfish (Carassius auratus). Anim Cogn 2:109–120

    Article  Google Scholar 

  • Lopez JC, Rodriguez F, Gomez Y, Vargas JP, Broglio C, Salas C (2000a) Place and cue learning in turtles. Anim Learn Behav 28:360–372

    Google Scholar 

  • Lopez JC, Broglio C, Rodriguez F, Thinus-Blanc C, Salas C (2000b) Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish. Behav Brain Res 109:91–98

    Article  CAS  PubMed  Google Scholar 

  • Nelson JS (1984) Fishes of the world. Wiley, New York

    Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003a) The influenece of habitat stability on landmark use during spatial learning in the three spine stickleback. Anim Behav 63:701–707

    Article  Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003b) The role of learning in fish orientation. Fish Fish 4:235–246

    Google Scholar 

  • O’Gower AK (1995) Speculations on a spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Meyer) (Heterodontidae). Mar Freshwater Res 46:861–871

    Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press Clarendon Press, Oxford

    Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol: Anim Behav Proc 2: 97–116

    Article  Google Scholar 

  • Pitcher TJ, Magurran AE (1983) Shoal size, patch profitability and information exchange in foraging goldfish. Anim Behav 31:546–555

    Google Scholar 

  • Reese ES (1989) Orientation behaviour of butterfly fishes (Family Chaetodontidae) on coral reefs—spatial-learning of route specific landmarks and cognitive maps. Environ Biol Fish 25:79–86

    Google Scholar 

  • Reeves CD (1912) Moving and still lights as stimuli in a discrimination experiment with white rats. Anim Behav 7:168–168

    Google Scholar 

  • Riedel G (1998) Long-term habituation to spatial novelty in blind cave fish (Astyanax hubbsi): role of the telencephalon and its subregions. Learn Memory 4:451–461

    CAS  Google Scholar 

  • Rodriguez F, Duran E, Vargas JP, Torres B, Salas C (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22:409–420

    Google Scholar 

  • Roitblat HL, Tham W, Golub L (1982) Performance of Betta splendens in a radial arm maze. Anim Learn Behav 10:108–114

    Google Scholar 

  • Salas C, Broglio C, Rodriguez F, Lopez JC, Portavella M, Torres B (1996a.) Telencephalic ablation in goldfish impairs performance in a ’spatial constancy’ problem but not in a cued one. Behav Brain Res 79: 193–200

    Article  CAS  PubMed  Google Scholar 

  • Salas C, Rodriguez F, Vargas JP, Duran E, Torres B (1996b) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980

    Article  CAS  PubMed  Google Scholar 

  • Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A 164:655–662

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55: 189–208

    Google Scholar 

  • Ulrich JL (1915) Distribution of effort in learning in the white rat. Behav Monogr 2:1–51

    Google Scholar 

  • Velte F, Fleissner G, Wicker R (2002) Untersuchungen zur Chronoethologie des Pfauenaugenstechrochens (Potamotrygon motoro) – erste Ergebnisse. Verhandlungen der Gesellschaft für Ichthyologie 3: 119–129

    Google Scholar 

  • Warburton K (1990) The use of local landmarks by foraging goldfish. Anim Behav 40:500–505

    Google Scholar 

Download references

Acknowledgements

We would like to thank M. Hofmann, J. Mogdans and M. Barker for valuable comments on the manuscript and Slava Braun for animal caretaking, maintenance and repairs. We are specifically grateful to Mr. Wicker from the Frankfurt Zoo for supplying twelve of the animals used during this study, providing animal food and for giving advice on animal caretaking and maintenance. The research reported herein was performed under the guidelines established by the current German animal protection law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Schluessel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schluessel, V., Bleckmann, H. Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. J Comp Physiol A 191, 695–706 (2005). https://doi.org/10.1007/s00359-005-0625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0625-9

Keywords

Navigation