Skip to main content
Log in

The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

This study assessed spatial memory and orientation strategies in Chiloscyllium griseum. In the presence of visual landmarks, six sharks were trained in a fixed turn response. Group 1 started from two possible compartments approaching two goal locations, while group 2 started from and approached only one location, respectively. The learning criterion was reached within 9 ± 5.29 (group 1) and 8.3 ± 3.51 sessions (group 2). Transfer tests revealed that sharks had applied a direction strategy, possibly in combination with some form of place learning. Without visual cues, sharks relied solely on the former. To identify the underlying neural substrate(s), telencephalic were lesioned and performance compared before and after surgery. Ablation of the dorsal and medial pallia only had an effect on one shark (group 1), indicating that the acquisition and retention of previously gained knowledge were unaffected in the remaining four individuals. Nonetheless, the shark re-learned the task. In summary, C. griseum can utilize fixed turn responses to navigate to a goal; there is also some evidence for the use of external visual landmarks while orienting. Probably, strategies can be used alone or in combination. Neither the dorsal nor medial pallium seems to be responsible for the acquisition and processing of egocentric information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ITI:

Inter-trial interval

MS222:

Tricaine methanesulfonate

PFA:

Paraformaldehyde

POP:

Post-operative phase

SC:

Starting compartment

T1, T2, T3:

Transfer test 1, transfer test 2, transfer test 3

TrP:

Training phase

TP:

Transfer phase

References

  • Able KP (1989) Skylight polarization patterns and the orientation of migratory birds. J Exp Biol 141:241–256

    Google Scholar 

  • Aronson LR (1951) Orientation and jumping behavior in the gobiid fish, Bathygobius soporator. Am Mus Novit 1486:1–22

    Google Scholar 

  • Barnes CA, Nadel L, Honig WK (1980) Spatial memory deficit in senescent rats. Can J Psychol 34(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Bingman VP, Jones TJ (1994) Sun compass-based spatial learning impaired in homing pigeons with hippocampal lesions. Neuroscience 14(11):6687–6694

    CAS  PubMed  Google Scholar 

  • Bingman VP, Mench J (1990) Homing behavior of hippocampus and parahippocampus lesioned pigeons following short-distance releases. Behav Brain Res 40(3):227–238

    Article  CAS  PubMed  Google Scholar 

  • Bingman VP, Bagnoli P, Ioalé P, Casini G (1989) Behavioral and anatomical studies of the avian hippocampus. Wiley, New York

    Google Scholar 

  • Broglio C, Gómez A, Durán E, Ocaña FM, Jiminez-Moya F, Rodríguez F, Salas C (2005) Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull 66(4–6):277–281

    Article  CAS  PubMed  Google Scholar 

  • Broglio C, Rodríguez F, Gómez A, Arias JL, Salas C (2010) Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 210(2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Brown C, Gardner C, Braithwaite VA (2005) Differential stress responses in fish from areas of high- and low-predation pressures. J Comp Physiol B 175:305–312

    Article  PubMed  Google Scholar 

  • Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990) Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46:528–530

    Article  CAS  PubMed  Google Scholar 

  • Burt de Perera T, Macias Garcia C (2003) Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109:341–350

    Article  Google Scholar 

  • Dodson JJ (1988) The nature and role of learning in the orientation and migratory behavior of fishes. Environ Biol Fish 23(3):161–182

    Article  Google Scholar 

  • Durán E, Ocaña FM, Gómez A, Jiménez-Moya F, Broglio C, Rodríguez F, Salas C (2008) Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task. Acta Neurobiol Exp 68:519–525

    Google Scholar 

  • Durán E, Ocaña FM, Broglio C, Rodríguez F, Salas C (2010) Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task. Behav Brain Res 214(2):480–487

    Article  PubMed  Google Scholar 

  • Edren S and Gruber S (2005) Homing ability of young lemon sharks, Negaprion brevirostris. Environ Biol Fish 72(3):267–281

    Article  Google Scholar 

  • Font E, Gómez-Gómez A (1991) Spatial memory and exploration in lizards: role of the medial cortex. Abstracts of the Animal Behavior Society Meeting, Wilmington

  • Fuss T, Bleckmann H, Schluessel V (2013) Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus). J Comp Physiol A (in this issue). doi:10.1007/s00359-013-0859-x

  • Gaffan D, Harrison S (1989) Place memory and scene memory: effects of fornix transection in the monkey. Exp Brain Res 74(1):202–212

    Article  CAS  PubMed  Google Scholar 

  • Good M (1987) The effects of hippocampal-area parahippocampalis lesions on discrimination learning in the pigeon. Behav Brain Res 26:171–184

    Article  CAS  PubMed  Google Scholar 

  • Good M, Macphail EM (1994a) The avian hippocampus and short-term-memory for spatial and nonspatial information. J Exp Psychol B 47:293–317

    CAS  Google Scholar 

  • Good M, Macphail EM (1994b) Hippocampal-lesions in pigeons (Columba livia) disrupt reinforced preexposure but not overshadowing or blocking. J Exp Psychol B 47:263–291

    CAS  Google Scholar 

  • Hofmann MH, Northcutt RG (2012) Forebrain organization in elasmobranchs. Brain Behav Evol 80:142–151

    Article  PubMed  Google Scholar 

  • Holbrook R, de Perera Burt (2011) Three-dimensional spatial cognition: information in the vertical dimension overrides information from the horizontal. Anim Cogn 14(4):613–619

    Article  PubMed  Google Scholar 

  • Hughes R, Blight C (2000) Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Anim Behav 59(3):613–621

    Article  PubMed  Google Scholar 

  • Huntingford FA, Wright PJ (1989) How sticklebacks learn to avoid dangerous feeding places. Behav Process 19:181–189

    Article  Google Scholar 

  • Ingle D, Sahagian D (1973) Solution of a spatial constancy problem by goldfish. Physiol Pscychol 1(1):83–84

    Article  Google Scholar 

  • Jacobs LF (2003) The evolution of the cognitive map. Brain Behav Evolut 62(2):128–139

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (1995) Neurowissenschaften: Eine Einführung. Spektrum Akademischer, Heidelberg, p 324

    Google Scholar 

  • Kleerekoper H, Timms AM, Westlake GF (1970) An analysis of locomotor behaviour of goldfish (Carassius auratus). Anim Behav 18:317

    Article  CAS  PubMed  Google Scholar 

  • Kleerekoper H, Matis J, Gensler P, Maynard P (1974) Exploratory behaviour of goldfish Carassius auratus. Anim Behav 22:124–132

    Article  Google Scholar 

  • Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12(6):707–714

    Article  CAS  PubMed  Google Scholar 

  • López JC, Broglio C, Rodríguez F, Thinus-Blanc C, Salas C (1999) Multiple spatial learning strategies in goldfish (Carassius auratus). Anim Cogn 2:109–120

    Article  Google Scholar 

  • López JC, Rodríguez F, Gómez Y, Vargas JP, Broglio C, Salas C (2000) Place and cue learning in turtles. Anim Learn Behav 28(4):360–372

    Google Scholar 

  • López JC, Vargas JP, Gómez Y, Salas C (2003) Spatial and non-spatial learning in turtles: the role of medial cortex. Behav Brain Res 143(2):109–120

    Article  PubMed  Google Scholar 

  • Martín I, Gómez A, Salas C, Puerto A, Rodríguez F (2011) Dorsomedial pallium lesions impair taste aversion learning in goldfish. Neurobiol Learn Mem 96:297–305

    Article  PubMed  Google Scholar 

  • Mazmanian DS, Roberts WA (1983) Spatial memory in rats under restricted viewing conditions. Learn Motiv 14:123–139

    Article  Google Scholar 

  • Meyer C, Papastamatiou K, Holland KN (2010) A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, Hawaii. Mar Biol 157(8):1857–1868

    Article  Google Scholar 

  • Morris RGN, Garrud P, Rawlins JNP (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429

    Google Scholar 

  • Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    Article  CAS  PubMed  Google Scholar 

  • Northcutt RG (2011) Do teleost fishes possesses a homolog of mammalian isocortex? Brain Behav Evol 78:136–138

    Article  PubMed  Google Scholar 

  • Northcutt RG, Braford MR (1980) New observations on the organization and evolution of the telencephalon in actinopterygian fishes. Comparative neurology of the telencephalon. Plenum Press, New York

    Google Scholar 

  • O’Gower AK (1995) Speculations on a spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Heterodontidae). Marine Freshw Res 46:861–871

    Article  Google Scholar 

  • O’Keefe J, Conway DH (1978) Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res 31:573–590

    PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  • O’Keefe J, Nadel L, Keightleya S, Kill D (1975) Fornix lesions selectively abolish place learning in the rat. Exp Neurol 48(1):152–166

    Article  PubMed  Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4(3):235–246

    Article  Google Scholar 

  • Odling-Smee L, Boughman JW, Braithwaite VA (2008) Sympatric species of three spine stickleback differ in their performance in a spatial learning task. Behav Ecol Sociobiol 62(12):1935–1945

    Article  Google Scholar 

  • Olton DS, Papas B (1979) Spatial memory and hippocampal function. Neuropsychologia 17:669–682

    Article  CAS  PubMed  Google Scholar 

  • Papastamatiou YP, Cartamil DP, Lowe CG, Meyer CG, Wetherbee BM, Holland KN (2011) Scales of orientation, directed walks and movement path structure in sharks. Anim Ecol 80:864–874

    Article  Google Scholar 

  • Parkinson JK, Murray EA, Mishkin M (1988) A selective mnemonic role for the hippocampus in monkeys: memory for location of objects. Neuroscience 8:4159–4167

    CAS  PubMed  Google Scholar 

  • Peterson E (1980) Behavioral studies of telencephalic function in reptiles. Comparative neurology of the telencephalon. Plenum Press, New York

    Google Scholar 

  • Pico RM, Gerbrandt LK, Pondel M, Ivy G (1985) During stepwise cue deletion, rat place behaviors correlate with place unit response. Brain Res Bull 330:369–372

    CAS  Google Scholar 

  • Portavella M, Vargas JP, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57:397–399

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen M, Barnes CA, McNaughton BL (1989) A systematic test of cognitive mapping, working-memory, and temporal discontinuity theories of hippocampal function. Psychobiology 17(4):335–348

    Google Scholar 

  • Reese ES (1989) Orientation behavior of butterfly fishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environ Biol Fish 25(1–3):79–86

    Article  Google Scholar 

  • Rodríguez F, Durán E, Vargas JP, Torres B, Salas C (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22(4):409–420

    Article  Google Scholar 

  • Rodríguez F, López JC, Vargas JF, Gómez Y, Broglio C, Salas C (2002a) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. Neuroscience 22(7):2894–2903

    PubMed  Google Scholar 

  • Rodríguez F, López JC, Vargas JF, Broglio C, Gómez Y, Salas C (2002b) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57:499–503

    Article  PubMed  Google Scholar 

  • Roitblatt HL (1982) The meaning of representation in animal memory. Behav Brain Sci 5:353–406

    Article  Google Scholar 

  • Salas C, Rodríguez F, Vargas JP, Durán E, Torres B (1996a) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 5(110):965–980

    Article  Google Scholar 

  • Salas C, Broglio C, Rodríguez F, López JC, Portavella M, Torres B (1996b) Telencephalic ablation in goldfish impairs performance in a ‘spatial constancy’ problem but not in a cued one. Behav Brain Res 79:193–200

    Article  CAS  PubMed  Google Scholar 

  • Salas C, Broglio C, Rodríguez F (2003) Evolution of forebrain and spatial cognition in vertebrates: conservation across diversity. Brain Behav Evol 62(2):72–82

    Article  PubMed  Google Scholar 

  • Schluessel V, Bleckmann H (2005) Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. J Comp Physiol A 191(8):695–706

    Article  Google Scholar 

  • Schluessel V, Bleckmann H (2012) Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum). Zoology 115(6):346–353

    Article  PubMed  Google Scholar 

  • Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317

    Article  CAS  PubMed  Google Scholar 

  • Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Springer, Berlin

    Book  Google Scholar 

  • Smith ML, Milner B (1981) The role of the right hippocampus in the recall of spatial location. Neuropsychologia 19(6):781–793

    Article  CAS  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Anim Behav Proc 29:199–210

    Article  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2005) Animals’ use of landmarks and metric information to reorient: effects of the size of the experimental space. Cognition 97:121–133

    Article  PubMed  Google Scholar 

  • Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Anim Cogn 10:47–54

    Article  PubMed  Google Scholar 

  • Thinus-Blanc C (1988) Animal spatial condition. Thought without language. Oxford University Press, Oxford

    Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  CAS  PubMed  Google Scholar 

  • Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G (2003) Separate processing mechanisms for encoding of geometric and landmark information in the avian hippocampus. Eur J Neurosci 17:1695–1702

    Article  PubMed  Google Scholar 

  • Vargas JP, López JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural spatial information by goldfish (Carassius auratus). Comp Psychol 118(2):206–216

    Article  Google Scholar 

  • von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  • Walcott C (1996) Pigeon homing: observations, experiments, and confusions. J Exp Biol 199:21–27

    PubMed  Google Scholar 

  • Wallraff HG (2003) Olfactory navigation by birds. J für Ornithologie 144:1–32

    Article  Google Scholar 

  • Warburton K (1990) The use of local landmarks by foraging goldfish. Anim Behav 40(3):500–505

    Article  Google Scholar 

  • Warrant EJ, Kelber A, Gislén A, Greiner B, Ribi W, Wcislo WT (2004) Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 14(15):1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko R, Wiltschko W (1996) Magnetic orientation in birds. J Exp Biol 199:29–38

    PubMed  Google Scholar 

  • Yopak KE (2012) Neuroecology of cartilaginous fishes: the functional implications of brain scaling. Fish Biol 80(5):1968–2023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ursula Dung for conducting experiments during the training phase and Slawa Braun for animal caretaking, maintenance and repairs. We are specifically grateful to Dr. med. Ulrich Gerigk for his valuable help with surgical sewing. The research reported herein was performed under the guidelines established by the current German animal protection law (Landesamt für Natur, Umwelt und Verbraucherschutz NRW, 8.87-50.10.37.09.198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodora Fuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuss, T., Bleckmann, H. & Schluessel, V. The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation. J Comp Physiol A 200, 19–35 (2014). https://doi.org/10.1007/s00359-013-0858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0858-y

Keywords

Navigation