Skip to main content
Log in

Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The toxicological stress induced by pesticides, particularly neonicotinoid insecticides, and its consequences in bees has been the focus of much recent attention, particularly for honey bees. However, the emphasis on honey bees and neonicotinoids has led to neglect of the relevance of stingless bees, the prevailing pollinators of natural and agricultural tropical ecosystems, and of other agrochemicals, including other pesticides and even leaf fertilizers. Consequently, studies focusing on agrochemical effects on stingless bees are sparse, usually limited to histopathological studies, and lack a holistic assessment of the effects of these compounds on physiology and behavior. Such effects have consequences for individual and colony fitness and are likely to affect both the stingless bee populations and the associated community, thereby producing a hierarchy of consequences thus far overlooked. Herein, we review the current literature on stingless bee-agrochemical interactions and discuss the underlying mechanisms involved in reported stress symptoms, as well as the potential consequences based on the peculiarities of these pollinators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23:324–334

    Article  CAS  PubMed  Google Scholar 

  • Banks JE, Ackleh AS, Stark JD (2010) The use of surrogate species in risk assessments: using life history data to safeguard against false negatives. Risk Anal 30:175–182

    Article  PubMed  Google Scholar 

  • Banks JE, Stark JD, Vargas RI, Ackleh AS (2014) Deconstructing the surrogate species concept: a life history approach to the protection of ecosystem services. Ecol Appl 24:770–778

    Article  PubMed  Google Scholar 

  • Barbosa WF, Smagghe G, Guedes RNC (2015a) Perspective Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Barbosa WF, Tomé HVV, Bernardes RC, Siqueira MAL, Smagghe G, Guedes RNC (2015b) Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata. Environ Toxicol Chem 34:2149–2158

    Article  CAS  PubMed  Google Scholar 

  • Barbosa WF, De Meyer L, Guedes RNC, Smagghe G (2015c) Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Aapidae). Ecotoxicology 24:130–142

    Article  CAS  PubMed  Google Scholar 

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M (2009) Effect of fipronil on side-specific antennal tactile learning in the honeybee. J Insect Physiol 55:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Biesmeijer JC, Hartfelder K, Imperatriz-Fonseca VL (2006) Stingless bees: biology and management. Apidologie 37:121–123

    Article  Google Scholar 

  • Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J Insect Physiol 86:40–47

    Article  CAS  PubMed  Google Scholar 

  • Breeze TD, Vaissière BE, Bommarco R, Petanidou T, Seraphides N, Kozák L, Scheper J, Biesmeijer JC, Kleijn D, Gyldenkærne S, Moretti M, Holzschuh A, Steffan-Dewenter I, Stout JC, Pärtel M, Zobel M, Potts SG (2014) Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9:e82996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brosi BJ (2009) The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. Forest Ecol Manag 258:1830–1837

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Ehrlich PR (2007) Bee community shifts with landscape context in a tropical countryside. Ecol Appl 17:418–430

    Article  PubMed  Google Scholar 

  • Brown JC, Albrecht C (2001) The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymnoptera: Apidae: Meliponini) in central Rondonia, Brazil. J Biogeogr 28:623–634

    Article  Google Scholar 

  • Brown JC, Oliveira ML (2014) The impact of agricultural colonizations and deforestation on stingless bee (Apidae: Meliponini) composition and richness in Rondônia, Brazil. Apidologie 45:172–188

    Article  Google Scholar 

  • Burley LM, Fell RD, Saacke RG (2008) Survival of honey bee (Hymenoptera: Apidae) spermatozoa incubated at room temperature from drones exposed to miticides. J Econ Entomol 101:1081–1087

    Article  PubMed  Google Scholar 

  • Cairns CE, Villanueva-Gutierrez R, Koptur S, Bray DB (2005) Bee populations, forest disturbance, and Africanization in Mexico. Biotropica 37:686–692

    Article  Google Scholar 

  • Camargo JMF, Pedro SRM (2013) Meliponini Lepeletier, 1836. In: Moure JS, Urban D, Melo GAR (Orgs) Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region. http://www.moure.cria.org.br/catalogue. Accessed 6 Feb 2016

  • Cameron EC, Franck P, Oldroyd BP (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Mol Ecol 13:2357–2364

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AF, Del Lama MA (2015) Predicting priority areas for conservation from historical climate modelling: stingless bees from Atlantic forest hotspot as a case study. J Insect Conserv 19:581–587

    Article  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  CAS  PubMed  Google Scholar 

  • Chauzat P, Laurent M, Pierre M, Hendrikx P, Ribiere-Chabert M (2014) A pan-European epidemiological study on honey bee colony losses. Epilobee—a pan-European epidemiological study on honeybee colony lossses 2012–2013. In: European Union Reference Laboratory for Honeybee Health (EURL), Sophia Antipolis, France

  • Cintra P, Malaspina O, Bueno OC (2003) Toxicity of barbatimão to Apis mellifera and Scaptotrigona postica, under laboratory conditions. J Apicult Res 42:9–12

    Article  Google Scholar 

  • Coats JR (1994) Risks from natural versus synthetic insecticides. Annu Rev Entomol 39:489–515

    Article  CAS  PubMed  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26:1337–1348

    Article  CAS  Google Scholar 

  • Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62:578–582

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Cox DW (1999) Disorders of copper transport. Br Med Bull 55:544–555

    Article  CAS  PubMed  Google Scholar 

  • Cruz AS, da Silva-Zacarin EC, Bueno OC, Malaspina O (2010) Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae. Cell Biol Toxicol 26:165–176

    Article  CAS  Google Scholar 

  • Cutler GC, Scott-Dupree CD, Sultan M, McFarlane AD, Brewer L (2014) A large-scale field study examining effects of exposure to clothianidin seed-treted canola on honey bee colony health, development, and overwintering success. PeerJ 2:e652. doi:10.7717/peerj.652

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis RL (1993) Mushroom bodies and Drosophila learning. Neuron 11:1–14

    Article  CAS  PubMed  Google Scholar 

  • Del Sarto MCL, Oliveira EE, Guedes RNC, Campos LAO (2014) Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 45:626–636

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:99–117

    Article  CAS  Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. P Natl Acad Sci USA 110:18466–18471

    Article  CAS  Google Scholar 

  • Esquivel DMS, Wajnberg E, Nascimento FS, Pinho MB, Lins de Barros HG, Eizemberg R (2007) Do geomagnetic storms change the behaviour of the stingless bee guiruçu (Schwarziana quadripunctata)? Naturwissenschaften 94:139–142

    Article  CAS  PubMed  Google Scholar 

  • Esquivel DMS, Corrêa AAC, Vaillant OS, Melo VB, Gouvêa GS, Ferreira CG, Ferreira TA, Wajnberg E (2014) A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula. Naturwissenschaften 101:245–249

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    Article  CAS  PubMed  Google Scholar 

  • Fermino F, Falco JRP, Toledo VAA, Ruvolo-Takasusuki MCC (2011) Isoenzymes and cytochemical analysis in Tetragonisca angustula and Tetragonisca fiebrigi after herbicide contamination. Sociobiology 58:353–366

    Google Scholar 

  • Ferreira RAC, Zacarin ECMS, Malaspina O, Bueno OC, Tomotake MEM, Pereira AM (2013) Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid. Micron 46:57–65

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, Ngo HT, Azzu N, Sáez A, Åström J, An J, Blochtein B, Buchori D, García FJC, Silva FO, Devkota K, Ribeiro MF, Freitas L, Gaglianone MC, Goss M, Irshad M, Kasina M, Pacheco Filho AJS, Kiill LHP, Kwapong P, Nates-Parra G, Pires C, Pires V, Rawal RS, Akhmad R, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–391

    Article  CAS  PubMed  Google Scholar 

  • Giannini TC, Boff S, Cordeiro GD, Cartolano EA Jr, Veiga AK, Imperatriz-Fonseca VL, Saraiva AM (2015a) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46:209–223

    Article  Google Scholar 

  • Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP (2015b) Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS One 10:e0129225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert LI, Gill SS (2010) Insect control: biological and synthetic agents. Academic, London

    Google Scholar 

  • Gómez-Escobar E, Liedo P, Montoya P, Vandame R, Sánchez D (2014) Behavioral response of two species of stingless bees and the honey bee (Hymenoptera: Apidae) to GF-120. J Econ Entomol 107:1447–1449

    Article  PubMed  Google Scholar 

  • Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Syst 34:1–26

    Article  Google Scholar 

  • Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Phys 99:200–207

    Article  CAS  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:1–20

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridget JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardstone MC, Scott JG (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Hartfelder K, Engels W (1989) The composition of larval food in stingless bees: evaluating nutritional balance by chemosystematic methods. Insects Soc 36:1–14

    Article  Google Scholar 

  • Hatjina F, Papaefthimiou C, Charistos L, Dogaroglu T, Bouga M, Emmanouil C, Arnold G (2013) Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie 44:467–480

    Article  CAS  Google Scholar 

  • Heisenberg M (1998) What do the mushroom bodies do for the insect brain? An introduction. Learn Mem 5:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry M, Cerrutti N, Aupinel P, Decourtye A, Gayrard M, Odoux J-F, Pissard A, Rüger C, Bretagnolle V (2015) Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybess. Proc R Soc B 282:20152110

    Article  PubMed  Google Scholar 

  • Heylen K, Gobin B, Arckens L, Huybrechts R, Billen J (2011) The effects of four crop protection products on the morphology and ultrastructure of the hypopharyngeal gland of the European honeybee, Apis mellifera. Apidologie 42:103–116

    Article  CAS  Google Scholar 

  • ICMBIO (2014) Espécies ameaçadas, lista 2014. Instituto Chico Mendes de Conservação da Biodiversidade. http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/lista-de-especies.html. Accessed 22 Feb 2016

  • Jacob CRO, Soares HM, Carvalho SM, Nocelli RCF, Malaspina O (2013) Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille. Bull Environ Contam Toxicol 90:69–72

    Article  CAS  PubMed  Google Scholar 

  • Jacob CRO, Soares HM, Nocelli RC, Malaspina O (2015) Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica. Pest Manag Sci 71:114–122

    Article  CAS  PubMed  Google Scholar 

  • Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2016) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278

    Article  Google Scholar 

  • Johnson RM (2015) Honey bee toxicology. Annu Rev Entomol 60:415–434

    Article  CAS  PubMed  Google Scholar 

  • Karise R, Mänd M (2015) Recent insights into sublethal effects of pesticides on insect respiratory physiology. Open Access Insect Physiol 5:31–39

    Google Scholar 

  • Karise R, Muljar R, Smagghe G, Kaart T, Kuusik A, Dreyersdorff G, Williams IH, Mänd M (2016) Sublethal effects of kaolin and the biopesticides Prestop-Mix and BotaniGard on metabolic rate, water loss and longevity in bumble bees (Bombus terrestris). J Pest Sci 89:1–8

    Article  Google Scholar 

  • Kearns CA, Inouye W (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47:297–307

    Article  Google Scholar 

  • Kestler P (1991) Cyclic CO2 release as a physiological stress indicator in insects. Comp Biochem Phys C 100:207–211

    Article  Google Scholar 

  • Kluser S, Neumann P, Chauzat M-P, Pettis JS (2010) UNEP emerging issues: global bee colony disorders and other threats to insect pollinators. UNEP, Nairobi

    Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollinations from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasota JA, Dybas RA (1991) Avermectina, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36:91–117

    Article  CAS  PubMed  Google Scholar 

  • Lawrence TJ, Culbert EM, Felsot AS, Hebert VR, Sheppard WS (2016) Survey and risk assessment of Apis mellifera (Hymenoptera: Apidae) exposure to neonicotinoid pesticides in urban, rural, and agricultural settings. J Econ Entomol. doi 10.1093/jee/tov397 (in press)

  • Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945

    Article  CAS  PubMed  Google Scholar 

  • Lima MAP, Pires CSP, Guedes RNC, Campos LAO (2013) Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes. Apidologie 44:21–28

    Article  CAS  Google Scholar 

  • Lourenço CT, Carvalho SM, Malaspina O, Nocelli RCF (2012) Oral toxicity of fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). Bull Environ Contam Toxicol 89:921–924

    Article  PubMed  CAS  Google Scholar 

  • Lucano MJ, Cernicchiaro G, Wajnberg E, Esquivel DMS (2006) Stingless bee antennae: A magnetic sensory organ? Biometals 19:295–300

    Article  CAS  PubMed  Google Scholar 

  • Maltby L (1999) Studying stress: the importance of organism-level responses. Ecol Appl 9:431–440

    Article  Google Scholar 

  • Mänd M, Kuusik A, Martin A-J, Williams IH, Luik A, Karise R, Metspalu L, Hiiesaar K (2005) Discontinuous gas exchange cycles and active ventilation in pupae of the bumblebee Bombus terrestris. Apidologie 36:561–570

    Article  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Milivojevic T, Glavan G, Bozic J, Sepcic K, Mesaric T, Drobne D (2015) Neurotoxic potential of ingested ZnO nanomaterials on bees. Chemosphere 120:547–554

    Article  CAS  PubMed  Google Scholar 

  • Moffat C, Pacheco JG, Sharp S, Samson AJ, Bollan KA, Huang J, Buckland ST, Connolly CN (2015) Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). Faseb J 29:2112–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes SS, Bautista ARL, Viana BF (2000) Avaliação da Toxicidade Aguda (DL50 e CL50) de Inseticidas para Scaptotrigona tubiba (Smith) (Hymenoptera: Apidae): Via de Contato. An Soc Entomol Brasil 29:31–37

    CAS  Google Scholar 

  • Moroń D, Grzes IM, Skórka P, Szentgyorgyi H, Laskowski R, Potts SG, Woyciechowski M (2012) Abundance and diversity of wild bees along gradients of heavy metal pollution. J Appl Ecol 49:118–125

    Article  CAS  Google Scholar 

  • Mueller MY, Moritz RFA, Kraus FB (2012) Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana. Ecol Evol 2:1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullin CA, Chen J, Fine JD, Frazier MT, Frazier JL (2015) The formulation makes the honey bee poison. Pestic Biochem Physiol 120:27–35

    Article  CAS  PubMed  Google Scholar 

  • Nates-Parra G (2007) Abeja real, Melipona eburnea (Friese, 1900). In: Amar GG, Gonzalo Andrade M, Amat EG (eds) Libro Rojo de los Invertebrados Terrestres de Colombia. Insittuto de Ciencias Naturales, Universidadd Nacional de Colombia, Conservación Internacional Colombia, Instituto Alexander von Humboldt, Ministerio de Ambiente, Vivienda y Derrikki Territorial, Bogotá, pp 147–150

    Google Scholar 

  • Nazzi F, Pennacchio F (2014) Disentangling multiple interactions in the hive ecosystem. Trends Parasitol 30:556–561

    Article  PubMed  Google Scholar 

  • Oliveira EE, Pippow A, Salgado VL, Büschges A, Schmidt J, Kloppenburg P (2010) Cholinergic currents in leg motoneurons of Carausius morosus. J Neurophysiol 103:2770–2782

    Article  CAS  PubMed  Google Scholar 

  • Pacífico da Silva I, Oliveira FAS, Pedroza HP, Heloísa P, Gadelha ICN, Melo MM, Soto-Blanco B (2015) Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie 46:703–715

    Article  CAS  Google Scholar 

  • Papaefthimiou C, Pavlidou V, Gregorc A, Theophilidis G (2002) The action of 2,4-dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environ Toxicol and Phar 11:127–140

    Article  CAS  Google Scholar 

  • Papaefthimiou C, Zafeiridou G, Topoglidi A, Chaleplis G, Zografou S, Theophilidis G (2003) Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor). Comp Biochem Phys C Toxicol Pharmacol 135C:315–330

    Article  CAS  Google Scholar 

  • Papaefthimiou C, Papachristoforou A, Theophilidis G (2013) Biphasic responses of the honeybee heart to nanomolar concentrations of amitraz. Pestic Biochem Phys 107:132–137

    Article  CAS  Google Scholar 

  • Phillips JP, Hilliker AJ (1990) Genetic analysis of oxygen defense mechanisms in Drosophila melanogaster. Adv Genetics 28:43–71

    CAS  Google Scholar 

  • Pinto LZ, Hartfelder K, Bitondi MMG, Simões ZLP (2002) Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development. J Insect Physiol 48:783–790

    Article  CAS  PubMed  Google Scholar 

  • Pinto LZ, Laure MAFB, Bitondi MMG, Hartfelder K, Simões ZLP (2003) Ventral nerve cord remodeling in a stingless bee (Melipona quadrifasciata anthidioides, Hymenoptera, Apidae) depends on ecdysteroid fluctuation and programmed cell death. Int J Dev Biol 47:385–388

    PubMed  Google Scholar 

  • Queiroz ACM, Contrera FAL, Venturieri GC (2014) The effect of toxic nectar and pollen from Spathodea campanulata on the worker survival of Melipona fasciculata Smith and Melipona seminigra Friese, two Amazonian stingless bees (Hymenoptera: Apidae: Meliponini). Sociobiology 61:536–540

    Article  Google Scholar 

  • Roat TC, Carvalho SM, Nocelli RCF, Silva-Zacarin ECM, Palma MS, Malaspina O (2013) Effects of sublethal dose of fipronil on neuron metabolic activity of africanized honeybees. Arch Environ Con Tox 64:456–466

    Article  CAS  Google Scholar 

  • Rodrigues CG, Krüger AP. Barbosa WF, Guedes RNC (2016) Leaf fertilizers affect survival and behavior of the neotropical stingless bee Friesella schrottkyi. J Econ Entomol. doi 10.1093/jee/tow044 (in press)

  • Rosa AS, Price RI, Caliman MJF, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2015) The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination. Environ Toxicol Chem 34:1851–1853

    Article  CAS  Google Scholar 

  • Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee, Scaptotrigona aff. depilis. Apidologie. doi:10.1007/s13592-015-0424-4 (in press)

  • Rossi CA, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O (2013a) Brain morphophysiology of Africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch Environ Con Tox 65:234–243

    Article  CAS  Google Scholar 

  • Rossi CA, Roat TC, Tavares DA, Cintra-Socolowski P, Malaspina O (2013b) Effects of sublethal doses of imidacloprid in Malpighian tubules of africanized Apis mellifera (Hymenoptera, Apidae). Microsc Res Techniq 76:552–558

    Article  CAS  Google Scholar 

  • Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143

    Article  Google Scholar 

  • Roubik DW (2014) Pollinator safety in agriculture. Pollination services for sustainable agriculture - Field manuals, FAO, Rome

    Google Scholar 

  • Sakagami SF (1982) Stingless bees. In: Hermann HR, Hermann HR (eds) Social insects, vol 3, 1st edn. Academic Press, New York, pp 361–423

    Google Scholar 

  • Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879

    Article  CAS  PubMed  Google Scholar 

  • Sánchez D, Solórzano EDJ, Liedo P, Vandame R (2012) Effect of the natural pesticide spinosad (GF-120 formulation) on the foraging behavior of Plebeia moureana (Hymenoptera: Apidae). J Econ Entomol 105:1234–1237

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees – a risk assessment. PLoS One 9:e94482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016) Are bee diseases linked to pesticides?—A brief review. Environ Int 89(90):7–11

    Article  PubMed  CAS  Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agriculture pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626

    Article  Google Scholar 

  • Silveira FA, Melo GAR, Campos LAO, Pedro SRM (2014a) Invertebrados Terrestres—Melipona (Michmelia) capixaba Moure & Camargo, 1994—Uruçu-negra. http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/lista-de-especies/6005-especie-6005.html. Accessed 22 Feb 2016

  • Silveira FA, Melo GAR, Campos LAO, Pedro SRM (2014b) Invertebrados Terrestres - Melipona (Michmelia) rufiventris Lepeletier, 1836—Tujuba. http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/lista-de-especies/6006-especie-6006.html. Accessed 22 Feb 2016

  • Silveira FA, Melo GAR, Campos LAO, Pedro SRM (2014c) Invertebrados Terrestres—Melipona (Michmelia) scutellaris Latreille, 1811—Uruçu. http://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/lista-de-especies/6007-especie-6007.html. Accessed 22 Feb 2016

  • Škerl MIS, Gregorc A (2010) Heat shock proteins and cell death in situ localization in hypopharyngeal glands of honeybee (Apis mellifera carnica) workers after imidacloprid or coumaphos treatment. Apidologie 41:73–86

    Article  CAS  Google Scholar 

  • Slaa EJ, Tack A, Sommeijer M (2003) The effect of intrinsic and extrinsic factors on flower constancy in stingless bees. Apidologie 34:457–468

    Article  Google Scholar 

  • Slaa EJ, Sánchez Chaves LA, Malagodi-Braga KS, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–905

    Article  Google Scholar 

  • Soares HM, Jacob CRO, Carvalho SM, Nocelli RCF, Malaspina O (2015) Toxicity of imidacloprid to the stingless bee Scaptotrigona postica Latreille, 1807. (Hymenoptera: Apidae). Bull Environ Contam Toxicol 94:1–6

    Article  CAS  Google Scholar 

  • Souza TF, Cintra P, Malaspina O, Bueno OC, Fernandes JB, Almeida SSMS (2006) Toxic effects of methanolic and dichloromethane extracts of flowers and peduncles of Stryphnodendron adstringens (Leguminosae-Mimosoideae) to Apis mellifera and Scaptotrigona postica workers. J Apicult Res 45:112–116

    Article  Google Scholar 

  • Sparks TC, Crouse GD, Durst G (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57:896–905

    Article  CAS  PubMed  Google Scholar 

  • Stanley J, Preetha G, Chandrasekaran S, Kuttalam S (2009) Honey bees of the cardamom ecosystem and the selective toxicity of diafenthiuron to four different bee species in the laboratory. J Apicult Res 48:91–98

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–652

    Article  PubMed  Google Scholar 

  • Tavares DA, Roat TC, Carvalho SM, Silva-Zacarin ECM, Malaspina O (2015) In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135:370–378

    Article  CAS  PubMed  Google Scholar 

  • Teixeira LV, Waterhouse JM, Marques MD (2011) Respiratory rhythms in stingless bee workers: circadian and ultradian components throughout adult development. J Comp Physiol A 197:361–372

    Article  Google Scholar 

  • Tirado R, Simon G, Johnston P (2013) Bees in decline: a review of factors that put pollinators and agriculture in Europe at risk. Greenpeace, Exeter

    Google Scholar 

  • Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomé HVV, Rosi-Denadai CA, Pimenta JFN, Guedes RNC, Martins GF (2014) Age-mediated and environmentally mediated brain and behavior plasticity in the stingless bee Melipona quadrifasciata anthidioides. Apidologie 45:557–567

    Article  Google Scholar 

  • Tomé HVV, Barbosa WF, Corrêa AS, Gontijo LM, Martins GF, Guedes RNC (2015a) Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Ann Appl Biol 167:186–196

    Article  CAS  Google Scholar 

  • Tomé HVV, Barbosa WF, Martins GF, Guedes RNC (2015b) Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere 124:103–109

    Article  PubMed  CAS  Google Scholar 

  • Valdovinos-Núñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Sánchez ER (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742

    Article  PubMed  Google Scholar 

  • Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman T-L (2006) Pollination decays in biodiversity hotspots. Proc Natl Acad Sci USA 103:956–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Valk H, Koomen I, Blacquiere T, van der Steen JJM, Roessink I, Wassenberg J (2013) Aspects determining the risk of pesticides to wild bees: risk profiles for focal crops on three continents. Pollination services for sustainable agriculture—field manuals. FAO, Rome

    Google Scholar 

  • van der Zee R, Brodschneider R, Brusbardis V, Charrière J-D, Chlebo R, Coffey MF, Dahle B, Drazic MM, Kauko L, Kretavicius J, Kristiansen P, Mutinelli F, Otten C, Peterson M, Raudmets A, Santrac V, Seppãlã A, Soroker V, Topolska G, Vejsnæs F, Gray A (2014) Results of international standardized beekeeper surveys of colony losses for winter 2012–2013: analysis of winter loss rates and mixed effects modeling of risk factors for winter loss. J Apic Res 53:19–34

    Article  Google Scholar 

  • Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259

    Article  Google Scholar 

  • vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:80–95

    Article  Google Scholar 

  • Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    Article  CAS  PubMed  Google Scholar 

  • Wilms W, Imperatriz-Fonseca VL, Engles W (1996) Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honey bee on native stingless bees in the Brazilian Atlantic forest. Stud Neotrop Fauna Environ 31:137–151

    Article  Google Scholar 

  • Wilson DE, Velarde RA, Fahrbach SE, Mommaerts V, Smagghe G (2013) Use of primary cultures of Kenyon cells from bumblebee brains to assess pesticide side effects. Arch Insect Biochem 84:43–56

    Article  CAS  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Wu YY, Zhou T, Wang Q, Dai PL, Xu SF, Jia HR, Wang X (2015) Programmed cell death in the honey bee (Apis mellifera) (Hymenoptera: Apidae) worker brain induced by imidacloprid. J Econ Entomol 108:1486–1494

    Article  PubMed  Google Scholar 

  • Xavier VM, Message D, Picanço MC, Bacci L, Silva GA, Benevenute JS (2010) Impact of botanical insecticides on indigenous stingless bees (Hymenoptera: Apidae). Sociobiology 56:713–726

    Google Scholar 

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Google Scholar 

Download references

Acknowledgments

We express our gratitude to Profs. Michael Hrncir, Stefan Jarau, and Friedrich G. Barth for the invitation to prepare this review, and to Profs. Lucio A. O. Campos, Stefan Jarau, and two anonymous reviewers for valuable suggestions that improved this manuscript. We also acknowledge the financial support provided by the Minas Gerais State Foundation for Research Aid (FAPEMIG), National Council of Scientific and Technological Development (CNPq; Brazilian Ministry of Science and Technology), and the CAPES Foundation (Brazilian Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. P. Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, M.A.P., Martins, G.F., Oliveira, E.E. et al. Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202, 733–747 (2016). https://doi.org/10.1007/s00359-016-1110-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1110-3

Keywords

Navigation