Skip to main content
Log in

Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The development of proteinase inhibitors as potential insect control agents has been constrained by insect adaptation to these compounds. The velvet bean caterpillar (Anticarsia gemmatalis) is a key soybean pest species that is well-adapted to proteinase inhibitors, particularly serine-proteinase inhibitors, which are abundant in the caterpillar host. The expression of diverse proteolytic enzymes by gut symbionts may allow the velvet bean caterpillar to circumvent proteinase inhibitors produced by the host plant. In this study, we characterized the proteolytic activity of the four nonpathogenic species of gut bacteria isolated from the velvet bean caterpillar—Bacillus cereus, Enterococcus gallinarum, Enterococcus mundtii and Staphylococcus xylosus. Two proteinase substrates, N-α-benzoyl-l-Arg-p-nitroanilide (l-BApNA) and N-α-p-tosyl-l-Arg methyl ester (l-TAME) and five proteinase inhibitors [aprotinin, E-64, ethylenediamine tetraacetic acid (EDTA), pepstatin and N-α-tosyl-l-lysine chloromethyl ketone (TLCK)] as well as CaCl2, pH and temperature profiles were used to characterize the expressed proteolytic activity of these bacterial strains in vitro. Kinetic parameters for proteolytic activity were also estimated. The results of these experiments indicated that serine- and cysteine-proteinase activities were expressed by all four gut bacteria symbionts of the velvet bean caterpillar. The cysteine- and serine-proteinase activities of these gut symbionts were distinct and different from that of gut proteinases of the caterpillar itself. This finding provides support for the potential involvement of gut symbionts in the mitigation of the negative effects of serine-proteinase inhibitors in the velvet bean caterpillar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appel HM (1994) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals and insect pathogens. In: Bernays EA (ed) Insect–plant interactions, vol 5. CRC, Boca Raton, pp 209–221

    Google Scholar 

  • Beg QK, Gupta R (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz Microbl Technol 32:294–304

    Article  CAS  Google Scholar 

  • Bignell DE, Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera, Termitidae). Insects Socieaux 42:57–69

    Article  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineering crops. Phytochemistry 34:1453–1466

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM (1995) Are insects resistant to plant proteinase inhibitors? J Insect Physiol 41:107–116

    Article  CAS  Google Scholar 

  • Broadway RM (1996) Dietary proteinase inhibitors alter complement of midgut proteases. Arch Insect Biochem Physiol 32:39–53

    Article  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Helithis zea and Spodoptera exigua. J Insect Physiol 32:39–53

    Google Scholar 

  • Carlini CR, Grossi-de-Sá MF (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40:1515–1539

    Article  PubMed  CAS  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26:1337–1348

    Article  CAS  Google Scholar 

  • D`Avila-Levy CM, Souza RF, Gomes RC, Vermelho AB, Branquinha MH (2003) A novel extracellular calcium-dependent cysteine proteinase from Crithidia deanei. Arch Biochem Biophys 420:1–8

    Article  CAS  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:71–92

    Article  PubMed  CAS  Google Scholar 

  • Erlanger BF, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA, Gatehouse AMR (1998) Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pestic Sci 52:165–175

    Article  CAS  Google Scholar 

  • Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance—a critical review. Crop Prot 18:177–191

    Article  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Hummel BCW (1959) A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Can J Biochem Physiol 37:1393–1399

    Article  PubMed  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhalyan M, Poonguzhali S, Kim GH, Saravanan VS, Sa T (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol 103:2664–2675

    Article  PubMed  CAS  Google Scholar 

  • Indiraghandi P, Anandham R, Madhalyan M, Sa TM (2008) Characterization and plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  Google Scholar 

  • Indiraghandi P, Yoon C, Yang JO, Cho S, Sa TM (2010) Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). J Korean Soc Appl Biol Chem 53:605–617

    Article  Google Scholar 

  • Institute SAS (2008) SAS/STAT user’s guide. SAS Institute, Cary

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bolter C (1997) The adaptation of insects to plant protease inhibitors. J Insect Physiol 43:885–895

    Article  PubMed  CAS  Google Scholar 

  • Jongsma MA, Bakker PL, Peters J, Bosch D, Stickema WJ (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    Article  PubMed  CAS  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Kim KT, Paik SR, Chang CS (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Proc Biochem 38:155–159

    Article  CAS  Google Scholar 

  • Kawalec M, Potempa JL, Moon JL, Travis J, Murray BE (2005) Molecular diversity of a putative virulence factor: purification and characterization of isoforms of an extracellular serine glutamyl endopeptidase of Enterococcus faecalis with different enzymatic activities. J Bacteriol 187:266–275

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage os structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Marinho-Prado JS, Lourenção AL, Oliveira JA, Guedes RNC, Oliveira MGA (2011) Survival and feeding avoidance of the eucalyptus defoliator Thyrinteina arnobia exposed to the proteinase inhibitor berenil. J Appl Entomol 135:763–770

    Article  Google Scholar 

  • Matsumura F (2004) Contemporary issues on pesticide safety. J Pestic Sci 29:299–303

    Article  Google Scholar 

  • Matthews GA (2008) Attitudes and behaviors regarding use of crop protection products—a survey of more than 8500 smallholders in 26 countries. Crop Prot 27:834–846

    Article  Google Scholar 

  • Mendonça EG, Oliveira MGA, Visôtto LE, Guedes RNC (2012) Midgut cysteine-proteinase activity in the velvet bean caterpillar [Anticarsia gemmatalis (Hübner)]. J Pest Sci 85:117–123

    Article  Google Scholar 

  • Metcalf RL (1980) Changing role of insecticides in crop protection. Annu Rev Entomol 25:219–256

    Article  CAS  Google Scholar 

  • Mohamed SA, Fahmy AS, Mohamed TM, Hamdy SM (2005) Proteases in egg, miracidium and adult of Fasciola gigantic. Characterization of serine and cysteine proteases from adult. Comp Biochem Physiol B 142:192–200

    Article  PubMed  Google Scholar 

  • Moreira LF, Campos WG, Ribeiro FR, Guedes RNC, Oliveira MGA (2011) Survival and developmental impairment induced by the trypsin inhibitor bis-benzamidine in the velvet bean caterpillar (Anticarsia gemmatalis). Crop Prot 30:1285–1290

    Article  CAS  Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem. Toxicon 49:413–422

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MGA, De Simone SG, Xavier LP, Guedes RNC (2005) Partial purification and characterization of digestive trypsin-like proteases from the velvet bean caterpillar, Anticarsia gemmatalis. Comp Biochem Physiol B 140:369–380

    Article  PubMed  CAS  Google Scholar 

  • Pilon AM, Oliveira MGA, Guedes RNC (2006) Protein digestibility, protease activity, and post-embryonic development of the velvet bean caterpillar (Anticarsia gemmatalis) exposed to the trypsin-inhibitor benzamidine. Pestici Biochem Physiol 86:23–29

    Article  CAS  Google Scholar 

  • Pinto-Tomás AA, Sittenfeld A, Uribe-Lorío L, Chavarría F, Mora M, Janzen DH, Goodman RM, Simon HM (2011) Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed o different diets. Environ Entomol 40:1111–1122

    Article  PubMed  Google Scholar 

  • Pompermayer P, Lopes AR, Parra JRP, Terra WR, Silva-Filho M (2001) Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis. Entomol Exp Appl 99:79–85

    Article  CAS  Google Scholar 

  • Rao MB, Aparna MT, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    PubMed  CAS  Google Scholar 

  • Reeck GR, Oppert B, Denton M, Kanost M, Baker JE, Kramer KJ (1999) Insect proteinases. In: Truk V (ed) Proteases: new perspectives. Birkhausser, Boston, pp 125–148

    Chapter  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121

    Article  CAS  Google Scholar 

  • Shaw E, Mares-Guia M, Cohen W (1965) Evidence for na active center histidine in trypsin with the use of a specific reagent, 1-chloro-3-tosylamido-7-amino-2-heptanone, the chloromethyl ketone derived from N-alpha-tosyl-l-lysine. Biochemistry 4:2219–2224

    Article  CAS  Google Scholar 

  • Silva LB, Reis AP, Pereira EJG, Oliveira MGA, Guedes RNC (2010a) Altered cysteine-proteinase activity in insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais. Comp Biochem Physiol B 157:80–87

    Article  PubMed  CAS  Google Scholar 

  • Silva LB, Reis AP, Pereira EJG, Oliveira MGA, Guedes RNC (2010b) Partial purification and characterization of trypsin-like proteinases from insecticide-resistant and -susceptible strains of the maize weevil, Sitophilus zeamais. Comp Biochem Physiol B 155:12–19

    Article  PubMed  CAS  Google Scholar 

  • Silva-Lopez RE, De Simone SG (2004) Leishmania (Leishmania) amazonensisi: purification and characterization of a promastigote serine protease. Exp Parasitol 107:173–182

    Article  PubMed  Google Scholar 

  • Sipos T, Merkel JR (1970) Na effect of calcium ions on the activity, heat stability, and structure of trypsin. Biochemistry 9:2766–2775

    Article  PubMed  CAS  Google Scholar 

  • Stotz HU, Kroymann J, Mitchell-Olds T (1999) Plant–insect interactions. Cur Opin Plant Biol 2:268–272

    Article  CAS  Google Scholar 

  • Systat 2008. SigmaPlot v.10 user’s guide. Systat Software, Chicago

  • Terra WR, Ferreira C (2005) Biochemistry and digestion. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Pergamon, New York, pp 171–224

    Chapter  Google Scholar 

  • Vajda T, Garai A (1981) Comparison of the effect of calcium (II) and manganese (II) ions on trypsin autolysis. J Inorg Biochem 15:307–315

    Article  PubMed  CAS  Google Scholar 

  • Valasaki K, Staikou A, Theodorou LG, Charamopoulou V, Zacharaki P, Papamichael EM (2008) Purification and kinetics of two novel thermophilic extracellular proteases from Lactobacillus helveticus, from kefir with possible biotechnological interest. Biores Technol 99:5804–5813

    Article  CAS  Google Scholar 

  • Visôtto LE, Oliveira MGA, Guedes RNC, Ribon AOB, Good-God PIV (2009a) Contribution of gut bacteria to digestion and development of the velvet bean caterpillar, Anticarsia gemmatalis. J Insect Physiol 55:185–191

    Article  PubMed  Google Scholar 

  • Visôtto LE, Oliveira MGA, Ribon AOB, Mares-Guia TR, Guedes RNC (2009b) Characterization and identification of proteolytic bacteria from the gut of the velvet bean caterpillar (Lepidoptera: Noctuidae). Environ Entomol 38:1078–1085

    Article  PubMed  Google Scholar 

  • Walenciak O, Zwisler W, Gross EM (2002) Influence of myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acenria ephemerella. J Chem Ecol 28:2045–2056

    Article  PubMed  CAS  Google Scholar 

  • Walker AJ, Glen DM, Shewry PR (1999) Bacteria associated with the digestive system of the slug Deroceras reticulatumi are not required for protein digestion. Soil Biol Biochem 31:1387–1394

    Article  CAS  Google Scholar 

  • Wang SL, Chen YH, Wang CL, Yen YH, Chern MK (2005) Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigates in a shrimp and crab shell powder medium. Enz Microb Technol 36:660–665

    Article  CAS  Google Scholar 

  • Xavier LP, Oliviera MGA, Guedes RNC, Santos AV, De Simone SG (2005) Trypsin-like activity of membrane-bound midgut proteases from Anticarsia gemmatalis (Lepidoptera: Noctuidae). Eur J Entomol 102:147–153

    CAS  Google Scholar 

  • Zaspel JM, Hoy MA (2008) Microbial diversity associated with the fruit-piercing and blood-feeding moth Calyptra thalictri (Lepidoptera: Noctuidae). An Entomol Soc Am 101:1050–1055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Minas Gerais State Foundation for Research Aid (FAPEMIG), the National Council of Scientific and Technological Development (CNPq), the CAPES Foundation and the INCT initiative (FAPEMIG/CNPq/MCT) is greatly appreciated and acknowledged. The provision of the initial insect stock population by EMBRAPA Soja was also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. A. Oliveira.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilon, F.M., Visôtto, L.E., Guedes, R.N.C. et al. Proteolytic activity of gut bacteria isolated from the velvet bean caterpillar Anticarsia gemmatalis . J Comp Physiol B 183, 735–747 (2013). https://doi.org/10.1007/s00360-013-0744-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0744-5

Keywords

Navigation