Skip to main content

Advertisement

Log in

A review of the energetics of pollination biology

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Pollination biology is often associated with mutualistic interactions between plants and their animal pollen vectors, with energy rewards as the foundation for co-evolution. Energy is supplied as food (often nectar from flowers) or as heat (in sun-tracking or thermogenic plants). The requirements of pollinators for these resources depend on many factors, including the costs of living, locomotion, thermoregulation and behaviour, all of which are influenced by body size. These requirements are modified by the availability of energy offered by plants and environmental conditions. Endothermic insects, birds and bats are very effective, because they move faster and are more independent of environmental temperatures, than are ectothermic insects, but they are energetically costly for the plant. The body size of endothermic pollinators appears to be influenced by opposing requirements of the animals and plants. Large body size is advantageous for endotherms to retain heat. However, plants select for small body size of endotherms, as energy costs of larger size are not matched by increases in flight speed. If high energy costs of endothermy cannot be met, birds and mammals employ daily torpor, and large insects reduce the frequency of facultative endothermy. Energy uptake can be limited by the time required to absorb the energy or eliminate the excess water that comes with it. It can also be influenced by variations in climate that determine temperature and flowering season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrol DP (2005) Pollination energetics. J Asia–Pac Entomol 8:3–14

    Google Scholar 

  • Alexander RM (2005) Models and the scaling of energy costs for locomotion. J Exp Biol 208:1645–1652

    Article  PubMed  Google Scholar 

  • Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate andes of Central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Ayala-Berdon J, Rodriguez-Pena N, Orduna-Villasenor M, Stoner KE, Kelm DH, Schondube JE (2011) Foraging behavior adjustments related to changes in nectar sugar concentration in phyllostomid bats. Comp Biochem Physiol A 160:143–148

    Article  PubMed  CAS  Google Scholar 

  • Ayala-Berdon J, Schondube JE, Stoner KE (2009) Seasonal intake responses in the nectar-feeding bat Glossophaga soricina. J Comp Physiol B 179:553–562

    Article  PubMed  Google Scholar 

  • Baker HG (1963) Evolutionary mechanisms in pollination biology. Science 139:877–883

    Article  PubMed  CAS  Google Scholar 

  • Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectars and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30:559–586

    Article  Google Scholar 

  • Bakken BH, Herrera LG, Carroll RM, Ayala-Berdon J, Schondube JE, del Rio CM (2008) A nectar-feeding mammal avoids body fluid disturbances by varying renal function. Am J Physiol 295:F1855–F1863

    CAS  Google Scholar 

  • Barrett SCH, Harder LD (1996) Ecology and evolution of plant mating. TREE 11:73–79

    PubMed  CAS  Google Scholar 

  • Bartels W, Law BS, Geiser F (1998) Daily torpor and energetics in a tropical mammal, the northern blossom-bat Macroglossus minimus (Megachiroptera). J Comp Physiol B 168:233–239

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: The architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Blüthgen N, Klein A (2011) Functional complementarity and specialisation: The role of biodiversity in plant-pollinator interactions. Basic Appl Ecol 12:282–291

    Article  Google Scholar 

  • Bradshaw D, Bradshaw F (2012) The physiology of the honey possum, Tarsipes rostratus, a small marsupial with a suite of highly specialised characters: a review. J Comp Physiol B 182:469–489

    Article  PubMed  Google Scholar 

  • Brown JH, Calder WA, Kodric-Brown A (1978) Correlates and consequences of body size in nectar-feeding birds. Am Zool 18:687–700

    Google Scholar 

  • Calder WA III (1996) Size, function, and life history. Dover Publications, New York

    Google Scholar 

  • Coburn DK, Geiser F (1998) Seasonal changes in energetics and torpor patterns in the subtropical blossom-bat Syconycteris australis (Megachiroptera). Oecologia 113:467–473

    Article  Google Scholar 

  • Colin LJ, Jones CE (1980) Pollen energetics and pollination modes. Am J Bot 67:210–215

    Article  Google Scholar 

  • Collins BG, Briffa P (1983) Seasonal and diurnal-variations in the energetics and foraging activities of the brown honeyeater, Lichmera indistincta. Aust J Ecol 8:103–111

    Article  Google Scholar 

  • Collins BG, Cary G, Packard G (1980) Energy assimilation, expenditure and storage by the brown honeyeater, Lichmera indistincta. J Comp Physiol B 137:157–163

    Article  Google Scholar 

  • da Silva KLJ, Garcia GLM, Barbosa LA (2006) Allometric scaling laws of metabolism. Phys Life Rev 3:229–261

    Article  Google Scholar 

  • Diamond JM, Karasov WH, Phan D, Carpenter FL (1986) Digestive physiology is a determinant of foraging bout frequency in hummingbirds. Nature 320:62–63

    Article  PubMed  CAS  Google Scholar 

  • Digby PSB (1954) Factors affecting the temperature excess of insects in sunshine. J Exp Biol 32:279–298

    Google Scholar 

  • Downs CT, Brown M (2002) Nocturnal heterothermy and torpor in the malachite sunbird (Nectarinia famosa). Auk 119:251–260

    Google Scholar 

  • Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fernandez MJ, Lopez-Calleja MV, Bozinovic F (2002) Interplay between the energetics of foraging and thermoregulatory costs in the green-backed firecrown hummingbird Sephanoides sephaniodes. J Zool 258:319–326

    Article  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–277

    Article  PubMed  CAS  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  PubMed  CAS  Google Scholar 

  • Goulson D (1999) Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect Plant Ecol Evol Syst 2:185–209

    Article  Google Scholar 

  • Hainsworth FR, Collins BG, Wolf LA (1977) The function of torpor in hummingbirds. Physiol Zool 50:215–222

    Google Scholar 

  • Hainsworth FR, Wolf LL (1972) Crop volume, nectar concentration and hummingbird energetics. Comp Biochem Physiol 42:359–366

    Article  CAS  Google Scholar 

  • Heinrich B (1972) Energetics of temperature regulation and foraging in a bumblebee, Bombus terricola Kirby. J Comp Physiol 77:49–64

    Article  Google Scholar 

  • Heinrich B (1975) Energetics of pollination. Ann Rev Ecol Syst 6:139–170

    Google Scholar 

  • Heinrich B (1993) The hot-blooded insects. Strategies and mechanisms of thermoregulation. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Heinrich B (2004) Bumblebee economics. Harvard University Press, Cambridge

    Google Scholar 

  • Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176:597–602

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM (1990) Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos:277-288

  • Heyneman AJ (1983) Optimal sugar concentrations of floral nectars dependence on sugar intake efficiency and foraging costs. Oecologia 60:198–213

    Article  Google Scholar 

  • Horner MA, Fleming TH, Sahley CT (1998) Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera : Phyllostomidae). J Zool 244:575–586

    Article  Google Scholar 

  • Karasov WH (1986) Energetics, physiology and vertebrate ecology. TREE 1:101–104

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant–pollinator interactions. Ann Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kelm DH, von Helversen O (2007) How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol B 177:667–677

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Daniel TL (1979) Mechanics and energetics of nectar feeding in butterflies. J Theor Biol 76:167–179

    Article  PubMed  CAS  Google Scholar 

  • Köhler A, Raubenheimer D, Nicolson SW (2012) Regulation of nutrient intake in nectar-feeding birds: insights from the geometric framework. J Comp Physiol B 182:603–611

    Article  PubMed  Google Scholar 

  • Köhler A, Verburgt L, McWhorter TJ, Nicolson SW (2010) Energy management on a nectar diet: can sunbirds meet the challenges of low temperature and dilute food? Funct Ecol 24:1241–1251

    Article  Google Scholar 

  • Kruger K, Prinzinger R, Schuchmann KL (1982) Torpor and metabolism in hummingbirds. Comp Biochem Physiol A 73:679–689

    Article  Google Scholar 

  • Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Article  Google Scholar 

  • Lopez-Calleja MV, Bozinovic F, Martinez del Rio C (1997) Effects of sugar concentration on hummingbird feeding and energy use. Comp Biochem Physiol A 118:1291–1299

    Article  Google Scholar 

  • Lotz CN, Martinez del Rio C, Nicolson SW (2003) Hummingbirds pay a high cost for a warm drink. J Comp Physiol B 173:455–462

    Article  PubMed  CAS  Google Scholar 

  • Lotz CN, Schondube JE (2006) Sugar preferences in nectar- and fruit-eating birds: behavioral patterns and physiological causes. Biotropica 38:3–15

    Google Scholar 

  • Luzar N, Gottsberger G (2001) Flower heliotropism and floral heating of five alpine plant species and the effect on flower visiting in Ranunculus montanus in the Austrian Alps. Arct Antarct Alp Res 33:93–99

    Article  Google Scholar 

  • MacMillen RE (1985) Energetic patterns and lifestyle in the Meliphagidae. New Zealand J Zool 12:623–629

    Article  Google Scholar 

  • Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol Zool 63:987–1011

    Google Scholar 

  • Martínez del Rio C, Schondube JE, McWhorter TJ, Herrera LG (2001) Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am Zool 41:902–915

    Article  Google Scholar 

  • McNab B (1974) The energetics of endotherms. Ohio J Sci 74:370–380

    Google Scholar 

  • McWhorter TJ, Martinez del Rio C (2000) Does gut function limit hummingbird food intake? Physiol Biochem Zool 73:313–324

    Article  PubMed  CAS  Google Scholar 

  • McWhorter TJ, Martínez del Rio C, Pinshow B, Roxburgh L (2004) Renal function in Palestine sunbirds: elimination of excess water does not constrain energy intake. J Exp Biol 207:3391–3398

    Article  PubMed  Google Scholar 

  • Medan V, Josens RB (2005) Nectar foraging behaviour is affected by ant body size in Camponotus mus. J Insect Physiol 51:853–860

    Article  PubMed  CAS  Google Scholar 

  • Nagy KA (1987) Field metabolic rate and food requirement scaling in mammals and birds. Ecol Monogr 57:111–128

    Article  Google Scholar 

  • Nagy KA, Girard IA, Brown TK (1999) Energetics of free-ranging mammals, reptiles, and birds. Annu Rev Nutr 19:247–277

    Article  PubMed  CAS  Google Scholar 

  • Nicolson S (1995) Direct demonstration of nectar reabsorption in the flowers of Grevillea robusta (Proteaceae). Funct Ecol 9:584–588

    Article  Google Scholar 

  • Nicolson SW (2002) Pollination by passerine birds: why are the nectars so dilute? Comp Biochem Physiol B 131:645–652

    Article  PubMed  Google Scholar 

  • Nicolson SW (2012) Bee food: The chemistry and nutritional value of nectar and pollen. South Afr J Bot 79:203–204

    Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, New York

    Book  Google Scholar 

  • Peat J, Tucker J, Goulson D (2005) Does intraspecific size variation in bumblebees allow colonies to efficiently exploit different flowers? Ecol Entomol 30:176–181

    Article  Google Scholar 

  • Pleasants JM, Chaplin SJ (1983) Nectar production rates of Asclepias quadrifolia: causes and consequences of individual variation. Oecologia 59:232–238

    Article  Google Scholar 

  • Pyke GH (1978) Optimal body size in bumblebees. Oecologia 34:255–266

    Article  Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Ann Rev Ecol Syst 15:523–575

    Article  Google Scholar 

  • Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature 350:58–59

    Article  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging—selective review of theory and tests. Quart Rev Biol 52:137–154

    Article  Google Scholar 

  • Randall D, Burggren W, French K (1997) Eckert animal physiology: mechanisms and adaptations, 4th edn. W.H. Freeman and Company, New York

    Google Scholar 

  • Schaffer WM, Jensen DB, Hobbs DE, Gurevitch J, Todd JR, Schaffer MV (1979) Competition, foraging energetics, and the cost of sociality in three species of bees. Ecology 60:976–987

    Article  Google Scholar 

  • Schippers M-P, Dukas R, McClelland GB (2010) Life-time- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. J Comp Physiol B 180:45–55

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS (2010) Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration. Plant Cell Environ 33:1474–1485

    PubMed  Google Scholar 

  • Seymour RS, Schultze-Motel P (1997) Heat-producing flowers. Endeavour 21:125–129

    Article  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–244

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2009) Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). J Exp Biol 212:2960–2968

    Article  PubMed  Google Scholar 

  • Southwick EE, Loper GM, Sadwick SE (1981) Nectar production, composition, energetics and pollinator attractiveness in spring flowers of Western NewYork. Am J Bot 68:994–1002

    Article  CAS  Google Scholar 

  • Stiles FG (1978) Ecological and evolutionary implications of bird pollination. Am Zool 18:715–727

    Google Scholar 

  • Stone GN (2008) Activity patterns of females of the solitary bee Anthophora plumipes in relation to temperature, nectar supplies and body size. Ecol Entomol 19:177–189

    Article  Google Scholar 

  • Suarez RK, Gass CL (2002) Hummingbird foraging and the relation between bioenergetics and behaviour. Comp Biochem Physiol A 133:335–343

    Article  Google Scholar 

  • Voigt CC, Kelm DH, Visser GH (2006) Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster? J Comp Physiol B 176:213–222

    Article  PubMed  Google Scholar 

  • Voigt CC, Winter Y (1999) Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae : Glossophaginae) and its scaling in moths, birds and bats. J Comp Physiol B 169:38–48

    Article  PubMed  CAS  Google Scholar 

  • von Helversen O, Reyer HU (1984) Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63:178–184

    Article  Google Scholar 

  • West G, Brown J, Enquist B (1999) The fourth dimension of life: fractual geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  PubMed  CAS  Google Scholar 

  • Willmer PG (1983) Thermal constraints on activity patterns in nectar-feeding insects. Ecol Entomol 8:455–469

    Article  Google Scholar 

  • Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693

    Article  Google Scholar 

  • Wolf LL, Stiles FG (1989) Adaptations for the fail-safe pollination of specialized ornithophilous flowers. Am Midl Nat 121:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. Seymour.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCallum, K.P., McDougall, F.O. & Seymour, R.S. A review of the energetics of pollination biology. J Comp Physiol B 183, 867–876 (2013). https://doi.org/10.1007/s00360-013-0760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0760-5

Keywords

Navigation