Skip to main content
Log in

Strategies for hypoxia adaptation in fish species: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Aquatic environments exhibit wide temporal and spatial variations in oxygen levels compared to terrestrial environments. Fish are an excellent model for elucidating the underlying mechanisms of hypoxia adaptation. Over the past decade, several hypoxia-related proteins have been reported to act in concert to convey oxygen change information to downstream signaling effectors. Some signaling pathways, such as redox status, AMPK, MAPK and IGF/PI3K/Akt, are known to play a central role in hypoxia adaptation. These networks regulate oxygen-sensitive transcription factors which, in turn, affect the expression of hypoxia adaptation-related genes. This review summarizes current insights into hypoxia adaptation-related proteins and signaling pathways in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amelio D, Garofalo F, Brunelli E, Loong AM, Wong WP, Ip YK, Tota B, Cerra MC (2008) Differential NOS expression in freshwater and aestivating Protopterus dolloi (lungfish): heart vs kidney readjustments. Nitric Oxide 18:1–10

    Article  PubMed  CAS  Google Scholar 

  • Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernàndez J, Procaccini G, Sordino P, Palumbo A (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28:163–179

    Article  PubMed  CAS  Google Scholar 

  • Borley KA, Beers JM, Sidell BD (2010) Phenylhydrazine-induced anemia causes nitric-oxide-mediated upregulation of the angiogenic pathway in Notothenia coriiceps. J Exp Biol 213:2865–2872

    Article  PubMed  CAS  Google Scholar 

  • Bracken C, Whitelaw ML, Peet DJ (2003) The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci 60:1376–1393

    Article  PubMed  CAS  Google Scholar 

  • Brahimi-Horn MC, Pouysségur J (2009) HIF at a glance. J Cell Sci 122:1055–1057

    Article  PubMed  CAS  Google Scholar 

  • Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Cao YB, Chen XQ, Wang S, Wang YX, Du JZ (2008) Evolution and regulation of the downstream gene of hypoxia-inducible factor-1α in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China. J Mol Evol 67:570–580

    Article  PubMed  CAS  Google Scholar 

  • Chou CF, Tohari S, Brenner S, Venkatesh B (2004) Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104:1498–1503

    Article  PubMed  CAS  Google Scholar 

  • Chu CY, Cheng CH, Chen GD, Chen YC, Hung CC, Huang KY, Huang CJ (2007) The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett 581:4265–4271

    Article  PubMed  CAS  Google Scholar 

  • Coleman M, Ratcliffe P (2009) Signalling cross talk of the HIF system: involvement of the FIH protein. Curr Pharm Des 15:3904–3907

    Article  PubMed  CAS  Google Scholar 

  • Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A (2009) Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol 212:627–638

    Article  PubMed  CAS  Google Scholar 

  • Darvish Bastami K, Haji Moradlou A, Mohamadi Zaragabadi A, Salehi Mir S, Shakiba M (2009) Measurement of some haematological characteristics of the wild carp. Comp Clin Pathol 18:321–323

    Article  Google Scholar 

  • Dong X, Qin J, Zhang X (2011) Fish adaptation to oxygen variations in aquaculture from hypoxia to hyperoxia. J Fish Aquat 2:23–28

    Google Scholar 

  • Earnhardt JN, Qian M, Tu C, Lakkis MM, Bergenhem NCH, Laipis PJ, Tashian RE, Silverman DN (1998) The catalytic properties of murine carbonic anhydrase VII. Biochemistry 37:10837–10845

    Article  PubMed  CAS  Google Scholar 

  • Esbaugh AJ, Perry SF, Gilmour KM (2009) Hypoxia-inducible carbonic anhydrase IX expression is insufficient to alleviate intracellular metabolic acidosis in the muscle of zebrafish, Danio rerio. Am J Physiol 296:R150–R160

    CAS  Google Scholar 

  • Fong GH (2009) Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med 87:549–560

    Article  PubMed  CAS  Google Scholar 

  • Fraser J, de Mello LV, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci USA 103:2977–2981

    Article  PubMed  CAS  Google Scholar 

  • Garcia Sampaio F, de Lima Boijink C, Tie Oba E, Bichara Romagueira, dos Santos L, Lúcia Kalinin A, Tadeu Rantin F (2008) Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comp Biochem Physiol 147:43–51

    Google Scholar 

  • Garofalo F, Parisella M, Amelio D, Tota B, Imbrogno S (2009) Phospholamban S-nitrosylation modulates starling response in fish heart. Proc R Soc Lond B Biol Sci 276:4043–4052

    Article  CAS  Google Scholar 

  • Hall JR, Richards RC, MacCormack TJ, Ewart KV, Driedzic WR (2005) Cloning of GLUT3 cDNA from Atlantic cod (Gadus morhua) and expression of GLUT1 and GLUT3 in response to hypoxia. Biochim Biophys Acta Gene Struct Expr 1730:245–252

    Article  CAS  Google Scholar 

  • Hansen MN, Jensen FB (2010) Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions. J Exp Biol 213:3593–3602

    Article  PubMed  CAS  Google Scholar 

  • Hixon ML, Paccagnella L, Millham R, Perez-Olle R, Gualberto A (2010) Development of inhibitors of the IGF-IR/PI3K/Akt/mTOR pathway. Rev Recent Clin Trials 5:189–208

    Article  PubMed  CAS  Google Scholar 

  • Hua Z, Lv Q, Ye W, Wong C-KA, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB (2006) miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1:e116

    Article  PubMed  Google Scholar 

  • Ivan M, Harris AL, Martelli F, Kulshreshtha R (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM (2009) Hypoxia regulates iNOS expression in human normal peritoneal and adhesion fibroblasts through nuclear factor kappa B activation mechanism. Fertil Steril 91:616–621

    Article  PubMed  CAS  Google Scholar 

  • Jibb LA, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211:3111–3122

    Article  PubMed  CAS  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Sci Signal 298:1911

    CAS  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  • Kajimura S, Aida K, Duan C (2005) Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci USA 102:1240–1245

    Article  PubMed  CAS  Google Scholar 

  • Kajimura S, Aida K, Duan C (2006) Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol Cell Biol 26:1142–1155

    Article  PubMed  CAS  Google Scholar 

  • Kamei H, Ding Y, Kajimura S, Wells M, Chiang P, Duan C (2011) Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development 138:777–786

    Article  PubMed  CAS  Google Scholar 

  • Koivunen P, Tiainen P, Hyvärinen J, Williams KE, Sormunen R, Klaus SJ, Kivirikko KI, Myllyharju J (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor α. J Biol Chem 282:30544–30552

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu C-G, Croce CM, Negrini M (2007) A microRNA signature of hypoxia. Sci Signal 27:1859

    CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  • Lee M, Hwang JT, Lee HJ, Jung SN, Kang I, Chi SG, Kim SS, Ha J (2003) AMP-activated protein kinase activity is critical for hypoxia-inducible factor-1 transcriptional activity and its target gene expression under hypoxic conditions in DU145 cells. J Biol Chem 278:39653–39661

    Article  PubMed  CAS  Google Scholar 

  • Lendahl U, Lee KL, Yang H, Poellinger L (2009) Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 10:821–832

    Article  PubMed  CAS  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2007) Hypoxia induces oxidative stress in tissues of a goby, the rotan (Perccottus glenii). Comp Biochem Physiol B 148:390–397

    Article  PubMed  Google Scholar 

  • Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc R Soc Lond B Biol Sci 276:735–744

    Article  CAS  Google Scholar 

  • Marques IJ, Leito JTD, Spaink HP, Testerink J, Jaspers RT, Witte F, Van Den Berg S, Bagowski CP (2008) Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J Comp Physiol B 178:77–92

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Alvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fisher 1(15):75–88

    Article  Google Scholar 

  • McNeill B, Perry S (2005) Nitric oxide and the control of catecholamine secretion in rainbow trout Oncorhynchus mykiss. J Exp Biol 208:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • McNeill B, Perry SF (2006) The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:4214–4223

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn BA, Kassebaum BL, Gitlin JD (2008) The zebrafish embryo as a dynamic model of anoxia tolerance. Dev Dyn 237:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, Schumacker PT (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol Cell Biol 31:3531–3545

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp 288:R1079–R1090

    Article  CAS  Google Scholar 

  • Nikinmaa M, Gassmann M, Bogdanova A (2011) Oxygen sensing: the role of reactive oxygen species. In: Abele D, Vázquez-Medina JP, Zenteno-Savín T (eds) Oxidative stress in aquatic ecosystems. John Wiley & Sons Ltd, Chichester, pp 165–177

  • Ossum CG, Wulff T, Hoffmann EK (2006) Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts. J Exp Biol 209:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, Barut B, Bahary N, Caro J, Handin R, Zon LI (2007) Functional conservation of erythropoietin signaling in zebrafish. Blood 110:2718–2726

    Article  PubMed  CAS  Google Scholar 

  • Pagès G, Pouysségur J (2005) Transcriptional regulation of the vascular endothelial growth factor gene—a concert of activating factors. Cardiovasc Res 65:564–573

    Article  PubMed  Google Scholar 

  • Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93

    Article  PubMed  CAS  Google Scholar 

  • Perry S, Jonz M, Gilmour K (2009) Oxygen sensing and the hypoxic ventilatory response. Fish Physiol 27:193–253

    Article  Google Scholar 

  • Pierron F, Baudrimont M, Gonzalez P, Bourdineaud JP, Elie P, Massabuau JC (2007) Common pattern of gene expression in response to hypoxia or cadmium in the gills of the European glass eel (Anguilla anguilla). Environ Sci Technol 41:3005–3011

    Article  PubMed  CAS  Google Scholar 

  • Rahman MS, Thomas P (2007) Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1alpha and HIF-2alpha, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus). Gene 396:273–282

    Article  PubMed  CAS  Google Scholar 

  • Rahman MS, Thomas P (2011) Characterization of three IGFBP mRNAs in Atlantic croaker and their regulation during hypoxic stress: potential mechanisms of their upregulation by hypoxia. Am J Physiol Endocrinol Metab 301:E637–E648

    Article  PubMed  CAS  Google Scholar 

  • Rees BB, Figueroa YG, Wiese TE, Beckman BS, Schulte PM (2009) A novel hypoxia-response element in the lactate dehydrogenase-B gene of the killifish Fundulus heteroclitus. Comp Biochem Physiol 154:70–77

    Article  Google Scholar 

  • Rees D, Palmer R, Schulz R, Hodson H, Moncada S (2012) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101:746–752

    Article  Google Scholar 

  • Richards JG (2011) Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J Exp Biol 214:191–199

    Article  PubMed  Google Scholar 

  • Rimoldi S, Terova G, Ceccuzzi P, Marelli S, Antonini M, Saroglia M (2012) HIF-1α mRNA levels in Eurasian perch (Perca fluviatilis) exposed to acute and chronic hypoxia. Mol Biol Rep 39:4009–4015

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi L, Basso P, Tettamanti G, Grimaldi A, Terova G, Saroglia M, de Eguileor M (2005) Oxygen availability causes morphological changes and a different VEGF/FIk-1/HIF-2 expression pattern in sea bass gills. Ital J Zool 72:103–111

    Article  CAS  Google Scholar 

  • Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209:2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275:3633–3643

    Article  PubMed  CAS  Google Scholar 

  • Rojas DA, Perez-Munizaga DA, Centanin L, Antonelli M, Wappner P, Allende ML, Reyes AE (2007) Cloning of hif-1α and hif-2α and mRNA expression pattern during development in zebrafish. Gene Expr Patterns 7:339–345

    Article  PubMed  CAS  Google Scholar 

  • Rus A, Peinado M, Castro L, Del Moral M (2010) Lung eNOS and iNOS are reoxygenation time-dependent upregulated after acute hypoxia. Anat Rec Adv Integr Anat Evol Biol 293:1089–1098

    Article  CAS  Google Scholar 

  • Rytkönen KT, Vuori KAM, Primmer CR, Nikinmaa M (2007) Comparison of hypoxia-inducible factor-1 alpha in hypoxia-sensitive and hypoxia-tolerant fish species. Comp Biochem Physiol D 2:177–186

    Google Scholar 

  • Scandalios J (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136

    Article  PubMed  CAS  Google Scholar 

  • Shen RJ, Jiang XY, Pu JW, Zou SM (2010) HIF-1α and -2α genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B 157:273–280

    Article  PubMed  Google Scholar 

  • Sheran L, Rudolf W, Patrick N, Richard Y, Richard K (2006) Cloning and expression analysis of two distinct HIF-alpha isoforms—gcHIF-1alpha and gcHIF-4alpha—from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 7:15

    Article  Google Scholar 

  • Shi X, Zhou B (2010) The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci 115:391–400

    Article  PubMed  CAS  Google Scholar 

  • Soitamo AJ, Råbergh CMI, Gassmann M, Sistonen L, Nikinmaa M (2001a) Characterization of a hypoxia-inducible factor (HIF-1α) from rainbow trout. Accumulation of protein occurs at normal venous oxygen tension. J Biol Chem 276:19699–19705

    Article  PubMed  CAS  Google Scholar 

  • Soitamo AJ, Råbergh CM, Gassmann M, Sistonen L, Nikinmaa M (2001b) Characterization of a hypoxia-inducible factor (HIF-1α) from Rainbow Trout—accumulation of protein occurs at normal venous oxygen tension. J Biol Chem 276:19699–19705

    Article  PubMed  CAS  Google Scholar 

  • Stensløkken KO, Ellefsen S, Stecyk JAW, Dahl MB, Nilsson GE, Vaage J (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol 295:R1803–R1814

    Google Scholar 

  • Taglialatela R, Della Corte F (1997) Human and recombinant erythropoietin stimulate erythropoiesis in the goldfish Carassius auratus. Eur J Histochem 41:301–304

    PubMed  CAS  Google Scholar 

  • Taylor CT, McElwain JC (2010) Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25:272–279

    Article  PubMed  CAS  Google Scholar 

  • Terova G, Rimoldi S, Corà S, Bernardini G, Gornati R, Saroglia M (2008) Acute and chronic hypoxia affects HIF-1α mRNA levels in sea bass (Dicentrarchus labrax). Aquaculture 279:150–159

    Article  CAS  Google Scholar 

  • Terova G, Rimoldi S, Brambilla F, Gornati R, Bernardini G, Saroglia M (2009) In vivo regulation of GLUT2 mRNA in sea bass (Dicentrarchus labrax) in response to acute and chronic hypoxia. Comp Biochem Physiol B 152:306–316

    Article  PubMed  Google Scholar 

  • van der Meer DLM, van den Thillart GE, Witte F, de Bakker MAG, Besser J, Richardson MK, Spaink HP, Leito JTD, Bagowski CP (2005) Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol 289:R1512–R1519

    Google Scholar 

  • Vuori KAM, Soitamo A, Vuorinen PJ, Nikinmaa M (2004) Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1alpha) and consecutive gene expression. Aquat Toxicol 68:301–313

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Zhong XP, Qiao ZX, Gui JF (2008) Inductive transcription and protective role of fish heme oxygenase-1 under hypoxic stress. J Exp Biol 211:2700–2706

    Article  PubMed  CAS  Google Scholar 

  • Welker AF, Campos ÉG, Cardoso LA, Hermes-Lima M (2012) Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia. Am J Physiol 302:R1111–R1118

    CAS  Google Scholar 

  • Wenger RH (2000) Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203:1253–1263

    PubMed  CAS  Google Scholar 

  • Yin JC, Tully T (1996) CREB and the formation of long-term memory. Curr Opin Neurobiol 6:264–268

    Article  PubMed  CAS  Google Scholar 

  • Yu RMK, Ng PKS, Tan T, Chu DLH, Wu RSS, Kong RYC (2008) Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP). Aquat Toxicol 90:235–242

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Wu RSS, Mok HOL, Wang Y, Poon WWL, Cheng SH, Kong RYC (2003) Isolation, characterization and expression analysis of a hypoxia-responsive glucose transporter gene from the grass carp, Ctenopharyngodon idellus. Eur J Biochem 270:3010–3017

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Linke S, Dias JM, Gradin K, Wallis TP, Hamilton BR, Gustafsson M, Ruas JL, Wilkins S (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105:3368–3373

    Article  PubMed  CAS  Google Scholar 

  • Zhong XP, Wang D, Zhang YB, Gui JF (2009) Identification and characterization of hypoxia-induced genes in Carassius auratus blastulae embryonic cells using suppression subtractive hybridization. Comp Biochem Physiol B 152:161–170

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123104120005 to B.Y.), Shanghai Educational Development Foundation (Grant No. 12CG56 to B.Y.), China Agriculture Research System (Grant No. CARS-49-4B to J.-L.Z.) and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAD26B03-01 to B.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Hua Wang or Biao Yan.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, CD., Wang, ZH. & Yan, B. Strategies for hypoxia adaptation in fish species: a review. J Comp Physiol B 183, 1005–1013 (2013). https://doi.org/10.1007/s00360-013-0762-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0762-3

Keywords

Navigation