Skip to main content
Log in

Lizard thermal trait variation at multiple scales: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adolph SC (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71:315–327

    Google Scholar 

  • Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat 142:273–295

    CAS  PubMed  Google Scholar 

  • Andrews RM (1994) Activity and thermal biology of the sand-swimming skink Neoseps reynoldsi: diel and seasonal patterns. Copeia 1994:91–99

    Google Scholar 

  • Andrews RM (1998) Geographic variation in field body temperature of Sceloporus lizards. J Therm Biol 23:329–334

    Google Scholar 

  • Andrews RM (2008) Lizards in the slow lane: thermal biology of chameleons. J Therm Biol 33:57–61

    Google Scholar 

  • Andrews RM, Kenney BS (1990) Diel patterns of activity and of selected ambient temperature of the sand-swimming lizard Sphenops sepsoides (Reptilia: Scincidae). Isr J Zool 37:65–73

    Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Angilletta MJ, Werner YL (1998) Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998:736–742

    Google Scholar 

  • Angilletta MJ, Montgomery LG, Werner YL (1999) Temperature preference in geckos: diel variation in juvenile and adults. Herpetologica 55:212–222

    Google Scholar 

  • Angilletta MJ, Hill T, Robson MA (2002a) Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol 27:199–204

    Google Scholar 

  • Angilletta MJ, Niewiarowski PH, Navas CA (2002b) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268

    Google Scholar 

  • Angilletta MJ, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS (2006) Coadaptation: a unifying principle in evolutionary thermal biology. Physiol Biochem Zool 79:282–294

    PubMed  Google Scholar 

  • Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Google Scholar 

  • Art GR, Claussen DL (1982) The rate of thermal acclimation in the lizard, Anolis carolinensis. Copeia 1982:189–192

    Google Scholar 

  • Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163

    PubMed  Google Scholar 

  • Autumn K, De Nardo DF (1995) Behavioral thermoregulation increases growth rate in a nocturnal lizard. J Herpetol 29:157–162

    Google Scholar 

  • Avery RA (1982) Field studies of body temperatures and thermoregulation. In: Gans C, Pough FH (eds) Biology of the Reptilia, vol 12. Academic Press, New York, pp 93–166

    Google Scholar 

  • Baez C, Cortes A (1990) Precisión de la termorregulación conductual del lagarto neotropical Tropidurus quadrivittatus (Lacertilia: Iguanidae). Rev Chil Hist Nat 63:203–209

    Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216

    Google Scholar 

  • Ballinger RE, Schrank GD (1970) Acclimation rate and variability of the critical thermal maximum in the lizard, Phrynosoma cornutum. Physiol Zool 43:19–22

    Google Scholar 

  • Ballinger RE, Hawker J, Sexton OJ (1969) The effect of photoperiod acclimation on the thermoregulation of the lizard, Sceloporus undulatus. J Exp Zool 171:43–48

    Google Scholar 

  • Bauwens D, Garland T Jr, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49:848–863

    Google Scholar 

  • Bauwens D, Hertz PE, Castilla AM (1996) Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioural mechanisms. Ecology 77:1818–1830

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Google Scholar 

  • Bennett AF (1980) The thermal dependence of lizard behaviour. Anim Behav 26:455–462

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:714–745

    Google Scholar 

  • Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:1371–1384

    Google Scholar 

  • Bogert CM (1949) Thermoregulation in reptiles, a factor in evolution. Evolution 3:195–211

    CAS  PubMed  Google Scholar 

  • Brattstrom BH (1965) Body temperatures of reptiles. Am Midl Nat 73:376–422

    Google Scholar 

  • Brett JR (1956) Some principles in the thermal requirements of fishes. Q Rev Biol 31:75–87

    Google Scholar 

  • Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as driver. Glob Chang Biol 18:675–684

    Google Scholar 

  • Burns TA (1970) Temperature of Yarrow’s spiny lizard Sceloporus jarrovi at high altitudes. Herpetologica 26:9–16

    Google Scholar 

  • Carothers J, Marquet P, Jaksic F (1998) Thermal ecology of a Liolaemus lizard assemblage along an Andean altitudinal gradient in Chile. Rev Chil Hist Nat 71:39–50

    Google Scholar 

  • Case TJ (1976) Seasonal aspects of thermoregulatory behavior in the chuckawalla, Sauromalus obesus. J Herpetol 10:85–95

    Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357

    PubMed Central  PubMed  Google Scholar 

  • Chevin LM, Gallet R, Gumulkiewicz R, Holt RD, Fellous S (2012) Phenotypic plasticity in a changing environment: towards a predictive theory. Philos Trans R Soc B 368:20120089

    Google Scholar 

  • Chong G, Heatwole H, Firth BT (1973) Panting thresholds of lizards. II. Diel variation in the panting threshold of Amphibolurus muricatus. Comp Biochem Physiol 46A:827–829

    Google Scholar 

  • Chown SL (2010) Temporal biodiversity change in transformed landscapes: a southern African perspective. Philos Trans R Soc B 365:3729–3742

    Google Scholar 

  • Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc B 367:1615–1627

    Google Scholar 

  • Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15:311–315

    PubMed  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Google Scholar 

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol 2:e406

    PubMed Central  PubMed  Google Scholar 

  • Chown SL, Gaston K, van Kleunen M, Clusella-Trullas S (2010a) Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evol Ecol 24:601–616

    Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010b) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15

    Google Scholar 

  • Christian KA, Bedford GS (1995) Seasonal changes in thermoregulation by the frillneck lizard, Chlamydosaurus kingii, in tropical Australia. Ecology 76:124–132

    Google Scholar 

  • Christian K, Bedford G (1996) Thermoregulation by the spotted tree monitor, Varanus scalaris, in the seasonal tropics of Australia. J Therm Biol 21:67–73

    Google Scholar 

  • Christian KA, Weavers BW (1996) Thermoregulation of monitor lizards in Australia: an evaluation of methods in thermal biology. Ecol Monogr 66:139–157

    Google Scholar 

  • Christian K, Tracy CR, Porter WP (1983) Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology 64:463–468

    Google Scholar 

  • Christian KA, Bedford G, Green B, Schultz T, Newgrain K (1998) Energetics and water flux of the marbled velvet gecko (Oedura marmorata) in tropical and temperate habitats. Oecologia 116:336–342

    Google Scholar 

  • Christian K, Bedford G, Green B, Griffiths A, Newgrain K, Schultz T (1999) Physiological ecology of a tropical dragon, Lophognathus temporalis. Aust J Ecol 24:171–181

    Google Scholar 

  • Clark DR, Kroll JC (1974) Thermal ecology of Anoline lizards: temperate versus tropical strategies. Southwest Nat 19:9–19

    Google Scholar 

  • Claussen DL (1977) Thermal acclimation in ambystomatid salamanders. Comp Biochem Physiol 58:333–340

    Google Scholar 

  • Clements JF (2007) The clements checklist of the birds of the world, 6th edn. Cornell University Press, Ithaca

    Google Scholar 

  • Clusella-Trullas S, Chown SL (2011) Comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537

    PubMed  Google Scholar 

  • Clusella-Trullas S, van Wyk JH, Spotila JR (2007a) Thermal melanism in ectotherms. J Therm Biol 32:235–245

    Google Scholar 

  • Clusella-Trullas S, Terblanche JS, van Wyk JH, Spotila JR (2007b) Low repeatability of preferred body temperature in four species of cordylid lizards: temporal variation and implications for adaptive significance. Evol Ecol 21:63–79

    Google Scholar 

  • Clusella-Trullas S, van Wyk JH, Spotila JR (2009) Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90:2297–2312

    PubMed  Google Scholar 

  • Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751

    PubMed  Google Scholar 

  • Cogger HG (1974) Thermal relations of the Mallee dragon Amphibolurus fovdi (Lacertilia : Agamidae). Aust J Zool 22:319–339

    Google Scholar 

  • Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1(1). doi:10.1093/conphys/cot001

  • Cooper N, Freckleton RP, Jetz W (2011) Phylogenetic conservatism of environmental niches in mammals. Proc R Soc Lond B Biol Sci 278:2384–2391

    Google Scholar 

  • Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165

    PubMed  Google Scholar 

  • Cortes A, Baez C, Rosenmann M, Pino C (1994) Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp Biochem Physiol 109:967–973

    Google Scholar 

  • Cowgell J, Underwood H (1979) Behavioral thermoregulation in lizards: a circadian rhythm. J Exp Zool 210:189–194

    Google Scholar 

  • Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:261–296

    Google Scholar 

  • Crozier L, Dwyer G (2006) Combining population-dynamic and ecophysiological models to predict climate induced insect range shifts. Am Nat 167:853–866

    PubMed  Google Scholar 

  • Cruz FB, Belver L, Acosta JC, Villavicencio HJ, Blanco G, Cánovas MG (2009) Thermal biology of Phymaturus lizards: evolutionary constraints or lack of environmental variation? Zoology 112:425–432

    PubMed  Google Scholar 

  • Dawson WR (1975) On the physiological significance of the preferred body temperatures of reptiles. In: Gates DM, Schmerl R (eds) Perspectives of biophysical ecology. Springer, New York, pp 443–473

    Google Scholar 

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    CAS  PubMed  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    CAS  PubMed  Google Scholar 

  • DeWitt CB (1967) Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol Zool 40:49–66

    Google Scholar 

  • Díaz JA (1997) Ecological correlates of the thermal quality of an ectotherm’s habitat: a comparison between two temperate lizard populations. Funct Ecol 11:79–89

    Google Scholar 

  • Díaz JA, Cabezas-Díaz S (2004) Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct Ecol 18:867–875

    Google Scholar 

  • Díaz JA, Iraeta P, Monasterio C (2006) Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J Therm Biol 31:237–242

    Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–707

    CAS  PubMed  Google Scholar 

  • Duarte H, Tejedo M, Katzenberger M, Marangoni F, Baldo D, Beltrán JF, Martí DA, Richter-Boix A, Gonzalez-Voyer A (2012) Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob Change Biol 18:412–421

    Google Scholar 

  • Ellis DJ, Firth BT, Belan I, Firthi BT (2006) Circadian rhythm of behavioral thermoregulation in the sleepy lizard (Tiliqua rugosa). Herpetologica 62:259–265

    Google Scholar 

  • Ellis DJ, Firth BT, Belan I (2008) Interseasonal variation in the circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J Comp Physiol A 194:701–712

    Google Scholar 

  • Ellison D, Futter MN, Bishop K (2012) On the forest cover-water yield debate: from demand- to supply-side thinking. Glob Chang Biol 18:806–820

    PubMed Central  Google Scholar 

  • Engbretson GA, Hutchison VH (1976) Parietalectomy and thermal selection in the lizard Sceloporus magister. J Exp Zool 198:29–38

    CAS  PubMed  Google Scholar 

  • Firth BT, Belan I (1998) Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations. Physiol Zool 71:303–311

    CAS  PubMed  Google Scholar 

  • Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500

    Google Scholar 

  • Gil MJ, Guerrero F, Perez-Mellado V (1994) Diel variation in preferred body temperatures of the Moorsih gecko Tarentola mauritanica during summer. Herpetol J 4:56–59

    Google Scholar 

  • Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270

    Google Scholar 

  • Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135–142

    PubMed  Google Scholar 

  • Glaw F, Köhler J, Townsend TM, Vences M (2012) Rivaling the world’s smallest reptiles: discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from Northern Madagascar. PLoS ONE 7:e31314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Google Scholar 

  • Gonzalez A, Ronce O, Ferriere, Hochberg ME (2012) Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos Trans R Soc B 368:20120404

    Google Scholar 

  • Grant BW, Dunham AE (1988) Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology 69:167–176

    Google Scholar 

  • Grant BW, Dunham AE (1990) Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology 71:1765–1776

    Google Scholar 

  • Grigg JW, Buckley LB (2013) Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett 9:20121056. doi:10.1098/rsbl.2012.1056

    PubMed  Google Scholar 

  • Gundy GC, Ralph CL, Wurst GZ (1975) Parietal eyes in lizards: zoogeographical correlates. Science 190:671–673

    CAS  PubMed  Google Scholar 

  • Gutierrez JA, Krenz JD, Ibargüengoytía NR (2010) Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J Therm Biol 35:332–337

    Google Scholar 

  • Gvoždík L (2011) Plasticity of preferred body temperatures as means of coping with climate change? Biol Lett 8:262–265

    PubMed Central  PubMed  Google Scholar 

  • Gvoždík L, Castilla A (2001) A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J Herpetol 35:486–492

    Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109:14726–14727

    CAS  Google Scholar 

  • Heath JE (1964) Reptilian thermoregulation: evaluation of field studies. Science 145:784–785

    Google Scholar 

  • Heatwole H (1970) Thermal ecology of the desert dragon Amphibolurus inermis. Ecol Monogr 40:425–457

    Google Scholar 

  • Heatwole H, Firth BT, Webb JW (1973) Panting thresholds of lizards I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus. Comp Biochem Physiol 46A:799–826

    Google Scholar 

  • Hertz PE (1979) Sensitivity to high temperatures in three west Indian grass anoles (Sauria, Iguanidae), with a review of heat sensitivity in the genus Anolis. Comp Biochem Physiol 63A:217–222

    Google Scholar 

  • Hertz PE (1981) Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiological ecology. J Zool 195:25–37

    Google Scholar 

  • Hertz PE (1992) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405–1417

    Google Scholar 

  • Hertz PE, Huey RB (1981) Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62:515–521

    Google Scholar 

  • Hertz PE, Nevo E (1981) Summer thermal biology of four agamid species in Israel. Isr J Zool 30:190–210

    Google Scholar 

  • Hertz PE, Arce-Hernandez A, Ramirez-Vazquez J, Tirado-Rivera W, Vazquez-Vives L (1979) Geographical variation of heat sensitivity and water loss rates in the tropical lizard, Anolis gundlachi. Comp Biochem Physiol 62A:947–953

    Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    CAS  PubMed  Google Scholar 

  • Higgins SI, O’Hara RB, Bykova O, Cramer MD, Chuine I, Gerstner E-M, Hickler T, Morin X, Kearnery MR, Midgley GM, Scheiter S (2012) A physiological analogy of the niche for projecting the potential distribution of plants. J Biogeogr 39:2132–2145

    Google Scholar 

  • Hoffmann AA (2010) Physiological climatic limits in Drosophila: patterns and implications. J Exp Biol 213:870–880

    CAS  PubMed  Google Scholar 

  • Hoffmann AA, Chown SL, Clusella-Trullas S (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27:934–949

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    CAS  PubMed  Google Scholar 

  • Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of the Reptilia, vol 12. Academic Press, London, pp 25–91

    Google Scholar 

  • Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:91–115

    Google Scholar 

  • Huey RB, Pianka ER (1977) Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58:1066–1075

    Google Scholar 

  • Huey RB, Webster TP (1976) Thermal biology of Anolis lizards in a complex fauna: the Cristatellus group on Puerto Rico. Ecology 57:985–994

    Google Scholar 

  • Huey RB, Niewiarowski PH, Kaufmann J, Herron JC (1989) Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiol Zool 62:488–504

    Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366

    PubMed  Google Scholar 

  • Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Alvarez Pérez H, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci 276:1939–1948

    Google Scholar 

  • Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc B 367:1665–1679

    Google Scholar 

  • Hutchison VH, Kosh RJ (1974) Thermoregulatory function of the parietal eye in the lizard Anolis carolinensis. Oecologia 16:173–177

    Google Scholar 

  • Hutchison VH, Maness JD (1979) The role of behavior in temperature acclimation and tolerance in ectotherms. Am Zool 19:367–384

    Google Scholar 

  • Innocenti A, Minutini L, Foa A (1993) The pineal and circadian rhythms of temperature selection and locomotion in lizards. Physiol Behav 53:911–915

    CAS  PubMed  Google Scholar 

  • Jankowski JE, Londoňo GA, Robinson SK, Chappell MA (2013) Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 36:1–12

    Google Scholar 

  • Jessop TS, Madsen T, Ciofi C, Imansyah J, Purwandana D, Rudiharto H, Arifiandy A, Phillips JA (2007) Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biol Conserv 135:247–255

    Google Scholar 

  • Jetz W, Fine P (2012) Area and productivity of the world’s biomes integrated over geological time predicts global patterns of vertebrate diversity. PLoS Biol 10:e1001292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson CR (1972) Diel variation in the thermal tolerance of Litoria gracilenta (Anura: Hylidae). Comp Biochem Physiol 41A:727–730

    Google Scholar 

  • Johnson CR (1976) Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Poeciliidae). Comp Biochem Physiol 55A:337–340

    Google Scholar 

  • Kauffmann JS, Bennett AF (1989) The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol Zool 62:1047–1058

    Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840

    CAS  PubMed  Google Scholar 

  • Kearney MR, Simpson SJ, Raubenheimer D, Kooijman SALM (2013) Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Funct Ecol 27:950–965

    Google Scholar 

  • Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA (2009) Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–1246

    CAS  PubMed  Google Scholar 

  • Kellermann V, Overgaard J, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Natl Acad Sci USA 109:16228–16233

    CAS  PubMed  Google Scholar 

  • Kelty JD, Lee RE (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. J Exp Biol 204:1659–1666

    CAS  PubMed  Google Scholar 

  • King RB, Lawson R (1995) Color-pattern variation in lake Erie snakes—the role of gene flow. Evolution 49:885–896

    Google Scholar 

  • Kingsolver JG, Huey RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545–560

    Google Scholar 

  • Kosh RJ, Hutchison VH (1972) Thermal tolerances of parietalectomized Anolis carolinensis acclimatized at different temperatures and photoperiods. Herpetologica 28:183–191

    Google Scholar 

  • Labra A (1998) Selected body temperatures of seven species of Chilean Liolaemus lizards. Rev Chil Hist Nat 71:349–358

    Google Scholar 

  • Labra A, Pienaar J, Hansen T (2009) Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat 174:204–220

    PubMed  Google Scholar 

  • Larson MW (1961) The critical thermal maximum of the lizard Sceloporus occidentalis occidentalis Baird and Girard. Herpetologica 17:113–122

    Google Scholar 

  • Lemos-Espinal JA, Ballinger RE (1995) Comparative thermal ecology of the high-altitude lizard Sceloporus grammicus. Can J Zool 73:2184–2191

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Google Scholar 

  • Levins R (1969) Thermal acclimation and heat resistance in Drosophila species. Am Nat 103:483–499

    Google Scholar 

  • Li H, Wang Z, Mei W, Ji X (2009) Temperature acclimation affects thermal preference and tolerance in three Eremias lizards (Lacertidae). Curr Zool 55:258–265

    Google Scholar 

  • Licht P (1968) Response of thermal preferendum and heat resistance to thermal acclimation under different photoperiods in the lizard Anolis carolinensis. Am Midl Nat 79:149–158

    Google Scholar 

  • Licht P, Dawson WR, Shoemaker VH, Main AR (1966) Observations on the thermal relations of western Australian lizards. Copeia 1966:97–111

    Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055

    CAS  PubMed  Google Scholar 

  • Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: data support the onset of spasms as the definitive end point. Can J Zool 75:1553–1560

    Google Scholar 

  • Lutterschmidt WI, Reinert HK (2012) Modeling body temperature and thermal inertia of large-bodied reptiles: support for water-filled biophysical models in radiotelemetric studies. J Therm Biol 37:282–285

    Google Scholar 

  • Lutterschmidt D, Lutterschmidt W, Hutchison VH (2003) Melatonin and thermoregulation in ectothermic vertebrates: a review. Can J Zool 81:1–13

    CAS  Google Scholar 

  • Marquis O, Massot M, Le Galliard JF (2008) Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 89:2575–2583

    PubMed  Google Scholar 

  • Marshall DJ, Morgan SG (2011) Ecological and evolutionary consequences of linked life-history stages in the sea. Curr Biol 21:R718–R725

    CAS  PubMed  Google Scholar 

  • Martin TL, Huey RB (2008) Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:102–118

    Google Scholar 

  • McGinnis SM (1966) Sceloporus occidentalis: preferred body temperature of the western fence lizard. Science 152:1090–1091

    CAS  PubMed  Google Scholar 

  • McGuigan K, Blows MA (2010) Evolvability of individual traits in a multivariate context: partitioning the additive genetic variance into common and specific components. Evolution 64:1899–1911

    CAS  PubMed  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Comstock Publishing, New York

    Google Scholar 

  • Medina M, Gutierrez J, Scolaro A, Ibargüengoytía N (2009) Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. J Therm Biol 34:32–40

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent and longer lasting heat waves in the 21st century. Science 305:994–997

    CAS  PubMed  Google Scholar 

  • Meiri S (2008) Evolution and ecology of lizard body sizes. Glob Ecol Biogeogr 17:724–734

    Google Scholar 

  • Meiri S (2010) Length-weight allometries in lizards. J Zool 281:218–226

    Google Scholar 

  • Middendorf GA, Simon CA (1988) Thermoregulation in the iguanid lizard Sceloporus jarrovi: the influences of age, time, and light condition on body temperature and thermoregulatory behaviors. Southwest Nat 33:347–356

    Google Scholar 

  • Mitchell WA, Angilletta MJ (2009) Thermal games: frequency-dependent models of thermal adaptation. Funct Ecol 23:510–520

    Google Scholar 

  • Navarro-García JC, García A, Mendez de la Cruz FR (2008) Estacionalidad, eficiencia termorreguladora de Aspidoscelis lineatissima (Sauria: Teiidae) y la calidad térmica del bosque tropical caducifolio en Chamela, Jalisco, México. Rev Mex Biodiv 79:413–419

    Google Scholar 

  • Nguyen KDT, Morley SA, Lai CH, Clark MS, Tan KS, Bates AE, Peck LS (2011) Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS One 6:e29340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson M, Wapstra E, Schwartz T, Madsen T, Ujvari B (2011) In hot pursuit: fluctuating mating system and sexual selection in sand lizards. Evolution 65:574–583

    PubMed  Google Scholar 

  • Patterson JW (1991) Emergence, basking behaviour, mean selected temperature and critical thermal minimum in high and low altitude subspecies of the tropical lizard Mabuya striata. Afr J Ecol 29:330–339

    Google Scholar 

  • Patterson JW, Davies PM (1978a) Preferred body temperature: seasonal and sexual differences in the lizard Lacerta vivipara. J Therm Biol 3:39–41

    Google Scholar 

  • Patterson JW, Davies PM (1978b) Thermal acclimation in temperate lizards. Nature 275:646–647

    CAS  PubMed  Google Scholar 

  • Paulissen MA (1988) Ontogenetic comparison of body temperature selection and thermal tolerance of Cnemidophorus sexlineatus. J Herpetol 22:473–476

    Google Scholar 

  • Pianka ER (1971) Ecology of the agamid lizard Amphibolurus isolepis in Western Australia. Copeia 1971:527–536

    Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley, CA

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    CAS  Google Scholar 

  • Refinetti R, Susalka SJ (1997) Circadian rhythm of temperature selection in a nocturnal lizard. Physiol Behav 62:331–336

    CAS  PubMed  Google Scholar 

  • Regal PJ (1966) Thermophilic response following feeding in certain reptiles. Copeia 1966:588–590

    Google Scholar 

  • Regal PJ (1967) Voluntary hypothermia in reptiles. Science 155:1551–1553

    CAS  PubMed  Google Scholar 

  • Revell LJ, Mahler DL, Sweeney JR, Sobotka M, Fancher VE, Losos JB (2010) Nonlinear selection and the evolution of variances and covariances for continuous characters in an anole. J Evol Biol 23:407–421

    CAS  PubMed  Google Scholar 

  • Richard J, Morley SA, Thorne MAS, Peck LS (2012) Estimating long-term survival temperatures at the assemblage level in the marine environment: towards macrophysiology. PLoS One 7:e34655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rismiller PD, Heldmaier G (1982) The effect of photoperiod on temperature selection in the European green lizard. Oecologia 53:222–226

    Google Scholar 

  • Rismiller PD, Heldmaier G (1988) How photoperiod influences body temperature selection in Lacerta viridis. Oecologia 75:125–131

    Google Scholar 

  • Rock J, Cree A (2008) Extreme variation in body temperature in a nocturnal lizard. Herpetol J 18:69–76

    Google Scholar 

  • Rock J, Cree A, Andrews RM (2002) The effect of reproductive condition on thermoregulation in a viviparous gecko from a cool climate. J Therm Biol 27:17–27

    Google Scholar 

  • Ruibal R (1961) Thermal relations of five species of tropical lizards. Evolution 15:98–111

    Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    CAS  PubMed  Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429

    CAS  PubMed  Google Scholar 

  • Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc B 367:1607–1614

    Google Scholar 

  • Sgrò C, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    PubMed Central  Google Scholar 

  • Sievert LM, Hutchison VH (1988) Light versus heat: thermoregulatory behaviour in a nocturnal lizard Gekko gecko. Herpetologica 44:266–273

    Google Scholar 

  • Sievert LM, Hutchison VH (1989) Influences of season, time of day, light and sex on the thermoregulatory behaviour of Crotaphytus collaris. J Therm Biol 14:159–165

    Google Scholar 

  • Sievert LM, Hutchison VH (1991) The influence of photoperiod and position of a light source on behavioral thermoregulation in Crotaphytus collaris (Squamata: Iguanidae). Copeia 1991:105–110

    Google Scholar 

  • Sievert LM, Paulissen MA (1996) Temperature selection and thermoregulatory precision of bisexual and parthenogenetic Cnemidophorus lizards from southern Texas, USA. J Therm Biol 21:15–20

    Google Scholar 

  • Sinervo B (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia 83:228–237

    CAS  PubMed  Google Scholar 

  • Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderon-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW Jr (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    CAS  PubMed  Google Scholar 

  • Skinner DC (1991) Effect of intraperitoneal melatonin injections on thermoregulation in the Transvaal girdled lizard, Cordylus vittifer. J Therm Biol 16:179–184

    CAS  Google Scholar 

  • Smith GR, Ballinger RE (1994) Thermal tolerance in the tree lizard (Urosaurus ornatus) from a desert population and a low montane population. Can J Zool 72:2066–2069

    Google Scholar 

  • Sorci G, Swallow JG, Garland T, Clobert J (1995) Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol Zool 68:698–720

    Google Scholar 

  • Spellerberg IF (1972a) Thermal ecology of allopatric lizards (Sphenomorphus) in southeast Australia. I. The environment and lizard critical temperatures. Oecologia 9:371–383

    Google Scholar 

  • Spellerberg IF (1972b) Temperature tolerances of southeast Australian lizards examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia 9:23–46

    Google Scholar 

  • Spellerberg IF (1974) Influence of photoperiod and light intensity on lizards voluntary temperatures. Br J Herpetol 5:412–420

    Google Scholar 

  • Spellerberg IF, Hoffmann K (1972) Circadian rhythm in lizard critical thermal minimum temperature. Naturwissenschaften 59:517–518

    CAS  PubMed  Google Scholar 

  • Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell Science, Oxford

    Google Scholar 

  • Stevenson RD (1985) The relative importance of behavioral and physiological adjustments controlling body temperatures in terrestrial ectotherms. Am Nat 126:362–386

    Google Scholar 

  • Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725

    PubMed  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088

    CAS  PubMed  Google Scholar 

  • Tinkle DW, Dunham AE, Congdon JD (1993) Life history and demographic variation in the lizard Sceloporus graciosus: a long-term study. Ecology 74:2413–2429

    Google Scholar 

  • Tocher MD (1992) Paradoxical preferred body temperatures of two allopatric Hoplodactylus maculatus (Reptilia: Gekkonidae) populations from New Zealand. N Z Nat Sci 19:53–60

    Google Scholar 

  • Tosini G (1997) The pineal complex of reptiles: physiological and behavioural roles. Ethol Ecol Evol 9:313–333

    Google Scholar 

  • Tosini G, Menaker M (1996) The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana. J Comp Physiol A 179:135–142

    CAS  PubMed  Google Scholar 

  • Tracy CR, Nussear KE, Esque TC, Dean-Bradley K, Tracy CR, DeFalco LA, Castle KT, Zimmerman LC, Espinoza RE, Barber AM (2006) The importance of physiological ecology in conservation biology. Integr Comp Biol 46:1191–1205

    PubMed  Google Scholar 

  • Tsuji JS (1988) Thermal acclimation of metabolism in Sceloporus lizards from different latitudes. Physiol Zool 61:241–253

    Google Scholar 

  • Tsuji JS, Huey RB, van Berkum FH, Garland T Jr, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252

    Google Scholar 

  • Underwood H (1992) Endogenous rhythms. In: Gans C, Crews D (eds) Biology of the Reptilia: hormones, brain and behavior, vol 18. University of Chicago Press, Chicago, pp 229–297

    Google Scholar 

  • Van Berkum FH (1988) Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am Nat 132:327–343

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. J Therm Biol 11:219–222

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1987) Thermoregulatory responses to environmental seasonality by the lizard Lacerta vivipara. Herpetologica 43:405–415

    Google Scholar 

  • Van Damme R, Bauwens D, Castilla AM, Verheyen RF (1989) Altitudinal variation of the thermal biology and running performance in the lizards Podarcis tiliguerta. Oecologia 80:516–524

    Google Scholar 

  • Van Damme R, Bauwens D, Verheyen RF (1990) Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57:61–67

    Google Scholar 

  • Vickers M, Manicom C, Schwarzkopf L (2011) Extending the cost-benefit model of thermoregulation: high-temperature environments. Am Nat 177:452–461

    PubMed  Google Scholar 

  • Vitt LJ, Caldwell JP (2009) Herpetology: an introductory biology of amphibians and reptiles, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Vrcibradic D, Rocha CFD (1998) The ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil. J Herpetol 32:229–237

    Google Scholar 

  • Waltner R (1991) Altitudinal ecology of Agama tuberculata Gray in the western Himalayas. Univ Kansas Mus Nat Hist Misc Pub 83:1–74

    Google Scholar 

  • Weldon CW, Terblanche JS, Chown SL (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Therm Biol 36:479–485

    Google Scholar 

  • Wheeler PE (1986) Thermal acclimation of metabolism and preferred body temperature in lizards. J Therm Biol 11:161–166

    Google Scholar 

  • Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G, Savage JM II, Donnelly MA (2007) Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci USA 104:8352–8356

    CAS  PubMed  Google Scholar 

  • Wilhoft DC, Anderson JD (1960) Effect of acclimation on the preferred body temperature of the lizard, Sceloporus occidentalis. Science 131:610–611

    CAS  PubMed  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Google Scholar 

  • Wilms TM, Wagner P, Shobrak M, Rödder D, Böhme W (2011) Living on the edge? On the thermobiology and activity pattern of the large herbivorous desert lizard Uromastyx aegyptia microlepis Blanford, 1875 at Mahazat as-Sayd Protected Area, Saudi Arabia. J Arid Environ 75:636–647

    Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Yang J, Sun YY, An H, Ji X (2008) Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B 178:343–349

    PubMed  Google Scholar 

  • Zani PA (2008) Climate change trade-offs in the side-blotched lizard (Uta stansburiana): effects of growing season length and mild temperatures on winter survival. Physiol Zool 81:797–809

    Google Scholar 

Download references

Acknowledgments

We thank John S. Terblanche and four anonymous reviewers for helpful comments on the work. SCT was funded by the HOPE project grant from Stellenbosch University and by the National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Clusella-Trullas.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clusella-Trullas, S., Chown, S.L. Lizard thermal trait variation at multiple scales: a review. J Comp Physiol B 184, 5–21 (2014). https://doi.org/10.1007/s00360-013-0776-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0776-x

Keywords

Navigation