Skip to main content
Log in

Some like it cold: summer torpor by freetail bats in the Australian arid zone

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T a :

Ambient temperature

T skin :

Skin temperature

T b :

Body temperature

TBD:

Torpor bout duration

References

  • Adams M, Reardon TR, Baverstock PR, Watts CHS (1988) Electrophoretic resolution of species boundaries in Australian Microchiroptera. IV. The molossidae (Chiroptera). Aust J Biol Sci 41:315–326

    CAS  Google Scholar 

  • Barclay RMR, Kalcounis MC, Crampton LH, Stefan C, Vonhof MJ, Wilkinson L, Brigham RM (1996) Can external radiotransmitters be used to assess body temperature and torpor in bats? J Mammal 77:1102–1106

    Article  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79:1885–1890

    Article  Google Scholar 

  • Ben-Hamo M, Munoz-Garcia A, Williams JB, Korine C, Pinshow B (2013) Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J Exp Biol 216:573–577

    Article  PubMed  Google Scholar 

  • Chruszcz BJ, Barclay RMR (2002) Thermoregulatory ecology of a solitary bat, Myotis evotis, roosting in rock crevices. Funct Ecol 16:18–26

    Article  Google Scholar 

  • Churchill S (2008) Australian bats, 2nd edn. Allen & Unwin, Crows Nest

    Google Scholar 

  • Cooper CE, McAllan BM, Geiser F (2005) Effect of torpor on the water economy of an arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura). J Comp Physiol B 175:323–328

    Article  PubMed  CAS  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Doucette LI, Brigham RM, Pavey CR, Geiser F (2012) Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia 169:361–372

    Article  PubMed  Google Scholar 

  • Geiser F (2004) The role of torpor in the life of Australian arid zone mammals. Aust Mammal 26:125–134

    Google Scholar 

  • Geiser F, Brigham RM (2000) Torpor, thermal biology, and energetics in Australian long-eared bats (Nyctophilus). J Comp Physiol B 170:153–162

    Article  PubMed  CAS  Google Scholar 

  • Geiser F, Brigham RM (2012) The other functions of torpor. In: Ruf T, Bieber C, Arnold W, Millesi E (eds) Living in a seasonal world. 14th International Hibernation Symposium. Springer, Heidelberg, pp 109–121

    Chapter  Google Scholar 

  • Geiser F, Drury RL (2003) Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor. J Comp Physiol B 173:55–60

    Article  PubMed  CAS  Google Scholar 

  • Hickey MBC, Fenton MB (1996) Behavioural and thermoregulatory responses of female hoary bats, Lasiurus cinereus (Chiroptera: Vespertilionidae), to variations in prey availability. Écoscience 3:414–422

    Google Scholar 

  • Hill JE, Smith JD (1988) Bats a natural history. British Museum (Natural History), London

    Google Scholar 

  • Hock RJ (1951) The metabolic rates and body temperatures of bats. Biol Bull 101:289–299

    Article  CAS  Google Scholar 

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Geiser F (1998) Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 113:170–178

    Article  Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid-zone marsupial. Naturwissenschaften 96:525–530

    Article  PubMed  Google Scholar 

  • Kunz TH (1982) Roosting ecology of bats. In: Kunz TH (ed) Ecology of bats. Plenum Press, New York, pp 1–55

    Chapter  Google Scholar 

  • Levy O, Dayan T, Kronfeld-Schor N (2011) Adaptive thermoregulation in golden spiny mice: the influence of season and food availability on body temperature. Physiol Biochem Zool 84:175–184

    Article  PubMed  Google Scholar 

  • Lovegrove BG (2000) Daily heterothermy in mammals: coping with unpredictable environments. In: Heldmaier G, Klingenspor M (eds) Life in the cold. 11th International Hibernation Symposium. Jungholz, Austria, pp 29–40

    Chapter  Google Scholar 

  • Lovegrove BG, Körtner G, Geiser F (1999) The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol B 169:11–18

    Article  PubMed  CAS  Google Scholar 

  • Maloney SK, Bronner GN, Buffenstein R (1999) Thermoregulation in the Angolan free-tailed bat Mops condylurus: a small mammal that uses hot roosts. Physiol Biochem Zool 72:385–396

    Article  PubMed  CAS  Google Scholar 

  • Meyer CFJ, Schwarz CJ, Fahr J (2004) Activity patterns and habitat preferences of insectivorous bats in a West African forest-savanna mosaic. J Trop Ecol 20:397–407

    Article  Google Scholar 

  • Milne DJ, Fisher A, Rainey I, Pavey CR (2005) Temporal patterns of bats in the top end of the Northern Territory, Australia. J Mammal 86:909–920

    Article  Google Scholar 

  • Munn AJ, Kern P, McAllan BM (2010) Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97:601–605

    Article  PubMed  CAS  Google Scholar 

  • R development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riek A, Geiser F (2013) Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev Camb Philos Soc 88:564–572

    Article  PubMed  Google Scholar 

  • Schmid J, Speakman JR (2000) Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B 170:633–641

    Article  PubMed  CAS  Google Scholar 

  • Schmid J, Speakman JR (2009) Torpor and energetic consequences in free-ranging grey mouse lemurs (Microcebus murinus): a comparison of dry and wet forests. Naturwissenschaften 96:609–620

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1979) Desert animals: physiological problems of heat and water. Dover Publications, New York

    Google Scholar 

  • Serventy V, Raymond R (1973) Torpidity in desert animals. Aust Wildl Heritage 14:2233–2240

    Google Scholar 

  • Stawski C, Geiser F (2010a) Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften 97:29–35

    Article  PubMed  CAS  Google Scholar 

  • Stawski C, Geiser F (2010b) Seasonality of torpor patterns and physiological variables of a free-ranging subtropical bat. J Exp Biol 213:393–399

    Article  PubMed  CAS  Google Scholar 

  • Stawski C, Turbill C, Geiser F (2009) Hibernation by a free-ranging subtropical bat (Nyctophilus bifax). J Comp Physiol B 179:433–441

    Article  PubMed  Google Scholar 

  • Taylor LR (1963) Analysis of the effect of temperature on insects in flight. J Anim Ecol 32:99–117

    Article  Google Scholar 

  • Taylor RJ, O’Neill MG (1988) Summer activity patterns of insectivorous bats and their prey in Tasmania. Aust Wildl Res 15:533–539

    Article  Google Scholar 

  • Thomas DW, Geiser F (1997) Periodic arousals in hibernating mammals: is evaporative water loss involved? Funct Ecol 11:585–591

    Article  Google Scholar 

  • Turbill C (2006) Thermoregulatory behavior of tree-roosting chocolate wattled bats (Chalinolobus morio) during summer and winter. J Mammal 87:318–323

    Article  Google Scholar 

  • Turbill C, Geiser F (2008) Hibernation by tree-roosting bats. J Comp Physiol B 178:597–605

    Article  PubMed  Google Scholar 

  • Turbill C, Körtner G, Geiser F (2003a) Natural use of heterothermy by a small, tree-roosting bat during summer. Physiol Biochem Zool 76:868–876

    Article  PubMed  Google Scholar 

  • Turbill C, Law BS, Geiser F (2003b) Summer torpor in a free-ranging bat from subtropical Australia. J Therm Biol 28:223–226

    Article  Google Scholar 

  • Vivier L, van der Merwe M (2007) The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. Afr Zool 42:50–58

    Article  Google Scholar 

  • Warnecke L, Turner JM, Geiser F (2008) Torpor and basking in a small arid zone marsupial. Naturwissenschaften 95:73–78

    Article  PubMed  CAS  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

Special thanks go to Ingrid Witte and the New South Wales National Parks and Wildlife Service for providing accommodation, a quad bike and help with organising the field work. Ulrike Klöcker, Barb Hawerkamp and Dan Hough helped during the field work. We are grateful to Chris Turbill for permission to use his data on Nyctophilus geoffroyi. Stuart Cairns and Thomas Ruf helped and advised with statistical procedures. Daniella Rojas and Shannon Currie helped with different aspects of this project. The research was conducted under permits from the New South Wales National Parks and Wildlife Service and the UNE Animal Ethics Committee. Financial support was received from the University of New England to AB and the Australian Research Council to FG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artiom Bondarenco.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarenco, A., Körtner, G. & Geiser, F. Some like it cold: summer torpor by freetail bats in the Australian arid zone. J Comp Physiol B 183, 1113–1122 (2013). https://doi.org/10.1007/s00360-013-0779-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0779-7

Keywords

Navigation