Skip to main content

Advertisement

Log in

Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Recent developments on shear strength (Vf) of steel fiber-reinforced concrete beam (SFRCB) simulation have been shifted to the implementation of the computer aid advancements. The current study is attempted to explore new hybrid artificial intelligence (AI) model called integrative support vector regression with firefly optimization algorithm (SVR-FFA) for shear strength prediction of SFRCB. The developed hybrid predictive model is constructed using laboratory experimental data set gathered from the literature and belongs to the shear failure capacity. The related beam dimensional and concrete properties are utilized as input attributes to predict Vf. The proposed SVR-FFA model is validated against classical SVR model and eight empirical formulations obtained from published researches. The attained results of the proposed hybrid AI model exhibited a reliable resultant performance in terms of prediction accuracy. Based on the examined root-mean-square error (RMSE) and the correlation coefficient (R2) over the testing phase, SVR-FFA achieved (RMSE ≈ 0.25 MPa) and (R2 ≈ 0.96).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Daniel J et al (2002) State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544. ACI J

  2. Parra-Montesinos GJ (2006) Shear strength of beams with deformed steel fibers. Concr Int 28:57–66

    Google Scholar 

  3. Shoaib A, Lubell AS, Bindiganavile VS (2014) Size effect in shear for steel fiber-reinforced concrete members without stirrups. ACI Struct J 111:1081–1090. https://doi.org/10.14359/51686813

    Article  Google Scholar 

  4. Zhang F, Ding Y, Xu J et al (2016) Shear strength prediction for steel fiber reinforced concrete beams without stirrups. Eng Struct 127:101–116. https://doi.org/10.1016/j.engstruct.2016.08.012

    Article  Google Scholar 

  5. Narayanan R, Darwish IYS (1987) Use of steel fibers as shear reinforcement. ACI Struct J 84:216–227. https://doi.org/10.14359/2654

    Article  Google Scholar 

  6. Tureyen AK, Frosch RJ (2002) Shear tests of FRP-reinforced concrete beams without stirrups. ACI Struct J. https://doi.org/10.14359/12111

    Article  Google Scholar 

  7. Tung ND, Tue NV (2018) Shear resistance of steel fiber-reinforced concrete beams without conventional shear reinforcement on the basis of the critical shear band concept. Eng Struct 168:698–707

    Article  Google Scholar 

  8. Yaseen ZM, Tran MT, Kim S et al (2018) Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach. Eng Struct 177:244–255. https://doi.org/10.1016/j.engstruct.2018.09.074

    Article  Google Scholar 

  9. Amani J, Moeini R (2012) Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Sci Iran 19:242–248. https://doi.org/10.1016/j.scient.2012.02.009

    Article  Google Scholar 

  10. Fiset M, Bastien J, Mitchell D (2019) Shear strengthening of concrete members with unbonded transverse reinforcement. Eng Struct 180:40–49. https://doi.org/10.1016/j.engstruct.2018.11.008

    Article  Google Scholar 

  11. Kolozvari K, Orakcal K, Wallace JW (2018) New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and columns. Comput Struct 196:246–262. https://doi.org/10.1016/j.compstruc.2017.10.010

    Article  Google Scholar 

  12. Sharma A (1986) Shear strength of steel fiber reinforced concrete beams. J Proc 83: 624–628

    Google Scholar 

  13. Mansur MA, Ong KCG, Paramasivam P (1986) Shear strength of fibrous concrete beams without stirrups. J Struct Eng 112:2066–2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)

    Article  Google Scholar 

  14. Li VC, Ward R, Hamza AM (1992) Steel and synthetic fibers as shear reinforcement. ACI Mater J 89(5):499–508

    Google Scholar 

  15. Ashour SA, Hasanain GS, Wafa FF (1992) Shear behavior of high-strength fiber reinforced concrete beams. ACI Struct J 89:176–184

    Google Scholar 

  16. Swamy RN, Jones R, Chiam ATP (1993) Influence of steel fibers on the shear resistance of lightweight concrete I-beams. ACI Struct J 90:103–114

    Google Scholar 

  17. Khuntia M, Stojadinovic B, Goel SC (1999) Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Struct J 96:282–289

    Google Scholar 

  18. Dinh HH, Parra-Montesinos GJ, Wight JK (2010) Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Struct J 107(5):597–606

    Google Scholar 

  19. Yakoub HE (2011) Shear stress prediction: steel fiber-reinforced concrete beams without stirrups. ACI Struct J 108:304–314. https://doi.org/10.14359/51682346

    Article  Google Scholar 

  20. Noshiravani T, Brühwiler E, Bruhwiler E, Brühwiler E (2013) Experimental investigation on reinforced ultra-high-performance fiber-reinforced concrete composite beams subjected to combined bending and shear. ACI Struct J 110:251

    Google Scholar 

  21. Bui NN, Ngo M, Nikolic M et al (2014) Enriched Timoshenko beam finite element for modeling bending and shear failure of reinforced concrete frames. Comput Struct 143:9–18. https://doi.org/10.1016/j.compstruc.2014.06.004

    Article  Google Scholar 

  22. Shahnewaz M, Alam MS (2014) Improved shear equations for steel fiber-reinforced concrete deep and slender beams. ACI Struct J 111:851–860. https://doi.org/10.14359/51686736

    Article  Google Scholar 

  23. Yaseen ZM, Deo RC, Hilal A et al (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  24. Abd AM, Abd SM (2017) Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Stud Constr Mater 6:8–15. https://doi.org/10.1016/j.cscm.2016.11.002

    Article  Google Scholar 

  25. Alqedra MA, Ashour AF (2005) Prediction of shear capacity of single anchors located near a concrete edge using neural networks. Comput Struct 83:2495–2502. https://doi.org/10.1016/j.compstruc.2005.03.019

    Article  Google Scholar 

  26. Adhikary BB, Mutsuyoshi H (2006) Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater 20:801–811. https://doi.org/10.1016/j.conbuildmat.2005.01.047

    Article  Google Scholar 

  27. Ahn N, Jang H, Park DK (2007) Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model. J Appl Polym Sci 103:2351–2358. https://doi.org/10.1002/app.25121

    Article  Google Scholar 

  28. Naik U, Kute S (2013) Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model. Int J Adv Struct Eng 5:29. https://doi.org/10.1186/2008-6695-5-29

    Article  Google Scholar 

  29. Abbas YM, Khan MI (2016) Influence of fiber properties on shear failure of steel fiber reinforced beams without web reinforcement: ANN modeling. Latin Am J Solids Struct 13:1483–1498. https://doi.org/10.1590/1679-78252851

    Article  Google Scholar 

  30. Singh PK, Tripathy A, Kainthola A et al (2017) Indirect estimation of compressive and shear strength from simple index tests. Eng Comput 33:2495–2502. https://doi.org/10.1007/s00366-016-0451-4

    Article  Google Scholar 

  31. Chen XL, Fu JP, Yao JL, Gan JF (2018) Prediction of shear strength for squat RC walls using a hybrid ANN–PSO model. Eng Comput. https://doi.org/10.1007/s00366-017-0547-5

    Article  Google Scholar 

  32. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc., New York

    Book  Google Scholar 

  33. Kulkrni KS, Kim D-K, Sekar SK, Samui P (2011) Model of least square support vector machine (LSSVM) for prediction of fracture parameters of concrete. Int J Concr Struct Mater 5:29–33. https://doi.org/10.4334/IJCSM.2011.5.1.029

    Article  Google Scholar 

  34. Tang HS, Xue ST, Chen R, Sato T (2006) Online weighted LS-SVM for hysteretic structural system identification. Eng Struct 28:1728–1735. https://doi.org/10.1016/j.engstruct.2006.03.008

    Article  Google Scholar 

  35. Gou J, Fan ZW, Wang C et al (2016) A minimum-of-maximum relative error support vector machine for simultaneous reverse prediction of concrete components. Comput Struct 172:59–70. https://doi.org/10.1016/j.compstruc.2016.05.003

    Article  Google Scholar 

  36. Cheng MY, Chou JS, Roy AFV, Wu YW (2012) High-performance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model. Autom Constr 28:106–115. https://doi.org/10.1016/j.autcon.2012.07.004

    Article  Google Scholar 

  37. Yan K, Shi C (2010) Prediction of elastic modulus of normal and high strength concrete by support vector machine. Constr Build Mater 24:1479–1485. https://doi.org/10.1016/j.conbuildmat.2010.01.006

    Article  Google Scholar 

  38. Olatomiwa L, Mekhilef S, Shamshirband S et al (2015) A support vector machine-firefly algorithm-based model for global solar radiation prediction. Sol Energy 115:632–644. https://doi.org/10.1016/j.solener.2015.03.015

    Article  Google Scholar 

  39. Kisi O, Shiri J, Karimi S et al (2015) A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Appl Math Comput 270:231–743. https://doi.org/10.1016/j.amc.2015.08.085

    Article  Google Scholar 

  40. Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41:6047–6056. https://doi.org/10.1016/j.eswa.2014.03.053

    Article  Google Scholar 

  41. Yang H, Chan L, King I (2002) Support vector machine regression for volatile stock market prediction. In: Intelligent data engineering automated, pp 391–396. https://doi.org/10.1007/3-540-45675-9_58

    Chapter  Google Scholar 

  42. Liu D, Chen Q (2013) Prediction of building lighting energy consumption based on support vector regression. In: 2013 9th Asian control conference, ASCC 2013. https://doi.org/10.1109/ASCC.2013.6606376

  43. Zhao W, Tao T, Zio E (2015) System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Appl Soft Comput J 30:792–802. https://doi.org/10.1016/j.asoc.2015.02.026

    Article  Google Scholar 

  44. Raghavendra S, Deka PC (2014) Support vector machine applications in the field of hydrology: a review. Appl Soft Comput J 19:372–386. https://doi.org/10.1016/j.asoc.2014.02.002

    Article  Google Scholar 

  45. Vapnik VN (2000) The nature of statistical learning theory. Springer, New York. https://doi.org/10.1109/TNN.1997.641482

    Book  MATH  Google Scholar 

  46. Vapnik VN (1998) Statistical learning theory. Wiley, New York. https://doi.org/10.2307/1271368

    Book  MATH  Google Scholar 

  47. Shamshirband S, Mohammadi K, Tong CW et al (2016) A hybrid SVM-FFA method for prediction of monthly mean global solar radiation. Theor Appl Climatol 125:53–65. https://doi.org/10.1007/s00704-015-1482-2

    Article  Google Scholar 

  48. Yaseen Z, Kisi O, Demir V (2016) Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water Resour Manag. https://doi.org/10.1007/s11269-016-1408-5

    Article  Google Scholar 

  49. Wu KP, Wang S De (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognit 42:710–717. https://doi.org/10.1016/j.patcog.2008.08.030

    Article  MATH  Google Scholar 

  50. Gromov VA, Shulga AN (2012) Chaotic time series prediction with employment of ant colony optimization. Expert Syst Appl 39:8474–8478. https://doi.org/10.1016/j.eswa.2012.01.171

    Article  Google Scholar 

  51. Walton S, Hassan O, Morgan K, Brown MR (2011) Modified cuckoo search: a new gradient free optimisation algorithm. Chaos Solitons Fractals 44:710–718. https://doi.org/10.1016/j.chaos.2011.06.004

    Article  Google Scholar 

  52. Ch S, Sohani SK, Kumar D et al (2014) A support vector machine-Firefly algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288. https://doi.org/10.1016/j.neucom.2013.09.030

    Article  Google Scholar 

  53. Dimatteo A, Vannucci M, Colla V (2014) Prediction of mean flow stress during hot strip rolling using genetic algorithms. ISIJ Int 54:171–178. https://doi.org/10.2355/isijinternational.54.171

    Article  Google Scholar 

  54. Zhao L, Yang Y (2009) PSO-based single multiplicative neuron model for time series prediction. Expert Syst Appl 36:2805–2812. https://doi.org/10.1016/j.eswa.2008.01.061

    Article  Google Scholar 

  55. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio Inspired Comput 2 2:78–84. https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  56. Mohammadi S, Mozafari B, Solimani S, Niknam T (2013) An adaptive modified firefly optimisation algorithm based on Hong’s point estimate method to optimal operation management in a microgrid with consideration of uncertainties. Energy 51:339–348. https://doi.org/10.1016/j.energy.2012.12.013

    Article  Google Scholar 

  57. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  58. Legates DR, Mccabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

    Article  Google Scholar 

  59. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmospheres 106:7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Musawi, A.A., Alwanas, A.A.H., Salih, S.Q. et al. Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Engineering with Computers 36, 1–11 (2020). https://doi.org/10.1007/s00366-018-0681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0681-8

Keywords

Navigation