Skip to main content
Log in

ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a hybrid bio-inspired metaheuristic optimization approach namely emperor penguin and salp swarm algorithm (ESA) is proposed. This algorithm imitates the huddling and swarm behaviors of emperor penguin optimizer and salp swarm algorithm, respectively. The efficiency of the proposed ESA is evaluated using scalability analysis, convergence analysis, sensitivity analysis, and ANOVA test analysis on 53 benchmark test functions including classical and IEEE CEC-2017. The effectiveness of ESA is compared with well-known metaheuristics in terms of the optimal solution. The proposed ESA is also applied on six constrained and one unconstrained engineering problems to evaluate its robustness. The results reveal that ESA offers optimal solutions as compared to the other competitor algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kaveh A, Shahrouzi M (2007) A hybrid ant strategy and genetic algorithm to tune the population size for efficient structural optimization. Eng Comput 24(3):237–254

    MATH  Google Scholar 

  2. Kaveh A, Shahrouzi M (2008) Dynamic selective pressure using hybrid evolutionary and ant system strategies for structural optimization. Int J Numer Methods Eng 73(4):544–563

    MathSciNet  MATH  Google Scholar 

  3. Singh P, Rabadiya K, Dhiman G (2018) A four-way decision-making system for the indian summer monsoon rainfall. Mod Phys Lett B 32(25):1850304

    Google Scholar 

  4. Singh P, Dhiman G (2018) A hybrid fuzzy time series forecasting model based on granular computing and bio-inspired optimization approaches. J Comput Sci 27:370–385 [Online]. http://www.sciencedirect.com/science/article/pii/S1877750317300923

  5. Singh P, Dhiman G, Kaur A (2018) A quantum approach for time series data based on graph and Schrödinger equations methods. Mod Phys Lett A 33(35):1850208

    Google Scholar 

  6. Kaur A, Kaur S, Dhiman G (2018) A quantum method for dynamic nonlinear programming technique using Schrödinger equation and Monte Carlo approach. Mod Phys Lett B 1850374

  7. Dhiman G, Kaur A (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization. Soft computing for problem solving. Springer, Berlin, pp 599–615

    Google Scholar 

  8. Dhiman G, Kumar V (2019) Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. Harmony search and nature inspired optimization algorithms. Springer, Berlin, pp 857–867

    Google Scholar 

  9. Kaur A, Dhiman G (2019) A review on search-based tools and techniques to identify bad code smells in object-oriented systems. Harmony search and nature inspired optimization algorithms. Springer, Berlin, pp 909–921

    Google Scholar 

  10. Dhiman G, Kaur A (2017) Spotted hyena optimizer for solving engineering design problems. In: Machine learning and data science (MLDS), 2017 international conference on IEEE, pp 114–119

  11. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl Based Syst 150:175–197 [Online]. http://www.sciencedirect.com/science/article/pii/S0950705118301357

  12. Dhiman G, Kaur A (2018) Optimizing the design of airfoil and optical buffer problems using spotted hyena optimizer. Designs 2(3):28

    Google Scholar 

  13. Dhiman G, Kumar V (2018) Knrvea: a hybrid evolutionary algorithm based on knee points and reference vector adaptation strategies for many-objective optimization. Appl Intell 1–27

  14. Dhiman G, Guo S, Kaur S (2018) Ed-sho: a framework for solving nonlinear economic load power dispatch problem using spotted hyena optimizer. Mod Phys Lett A 33(40):1850239

    Google Scholar 

  15. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Based Syst 159:20–50

    Google Scholar 

  16. Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70

    Google Scholar 

  17. Verma S, Kaur S, Dhiman G, Kaur A (2019) Design of a novel energy efficient routing framework for wireless nanosensor networks. In: 2018 first international conference on secure cyber computing and communication (ICSCCC). IEEE, pp 532–536

  18. Dhiman G, Singh P, Kaur H, Maini R (2019) DHIMAN: a novel algorithm for economic dispatch problem based on optimization method using Monte Carlo simulation and a strophysics concepts. Mod Phys Lett A 34(04):1950032

    Google Scholar 

  19. Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimization algorithm for industrial engineering problems. Eng Appl Artif Intell 82:148–174

    Google Scholar 

  20. Singh P, Dhiman G, Guo S, Maini R, Kaur H, Kaur A, Kaur H, Singh J, Singh N (2019) A hybrid fuzzy quantum time series and linear programming model: special application on Taiex index dataset. Mode Phys Lett A 1950201

  21. Dhiman G (2019) MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell

  22. Chandrawat RK, Kumar R, Garg B, Dhiman G, Kumar S (2017) An analysis of modeling and optimization production cost through fuzzy linear programming problem with symmetric and right angle triangular fuzzy number. In: Proceedings of sixth international conference on soft computing for problem solving. Springer, pp 197–211

  23. Singh P, Dhiman G (2017) A fuzzy-LP approach in time series forecasting. In: International conference on pattern recognition and machine intelligence, Springer, pp 243–253

  24. Dhiman G, Kumar V (2018) Astrophysics inspired multi-objective approach for automatic clustering and feature selection in real-life environment. Mod Phys Lett B 32(31):1850385

    Google Scholar 

  25. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:169–196

    Google Scholar 

  26. Singh P, Dhiman G (2018) Uncertainty representation using fuzzy-entropy approach: special application in remotely sensed high-resolution satellite images (RSHRSIs). Appl Soft Comput 72:121–139 [Online]. http://www.sciencedirect.com/science/article/pii/S1568494618304265

  27. Kaveh A, Rad SM (2010) Hybrid genetic algorithm and particle swarm optimization for the force method-based simultaneous analysis and design. Iran J Sci Technol 34(B1):15

    Google Scholar 

  28. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput Struct 102:14–27

    Google Scholar 

  29. Kaveh A, Javadi SM (2014) An efficient hybrid particle swarm strategy, ray optimizer, and harmony search algorithm for optimal design of truss structures. Period Polytech Civ Eng 58(2):155–171

    Google Scholar 

  30. Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl Based Syst 159:20–50 [Online]. http://www.sciencedirect.com/science/article/pii/S095070511830296X

  31. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  32. Waters A, Blanchette F, Kim AD (2012) Modeling huddling penguins. PLoS One 7(11):e50277

    Google Scholar 

  33. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Google Scholar 

  34. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328 [Online]

  35. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, New York

    MATH  Google Scholar 

  36. Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52. https://doi.org/10.1023/A:1015059928466 [Online]

  37. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Google Scholar 

  38. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  39. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. http://www.sciencedirect.com/science/article/pii/S0020025509001200 [Online]

  40. Erol OK, Eksin I (2006) A new optimization method: Big bang-big crunch. Adv Eng Softw 37(2):106–111. http://www.sciencedirect.com/science/article/pii/S0965997805000827 [Online]

  41. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    MATH  Google Scholar 

  42. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184. http://www.sciencedirect.com/science/article/pii/S0020025512005762 [Online]

  43. Formato RA (2009) Central force optimization: a new deterministic gradient-like optimization metaheuristic. Opsearch 46(1):25–51. https://doi.org/10.1007/s12597-009-0003-4 [Online]

  44. Du H, Wu X, Zhuang J (2006) Small-world optimization algorithm for function optimization. Springer, Berlin, pp 264–273

    Google Scholar 

  45. Alatas B (2011) ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst Appl 38(10):13 170–13 180. http://www.sciencedirect.com/science/article/pii/S0957417411006531 [Online]

  46. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294

    Google Scholar 

  47. Shah Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int J Comput Sci Eng 6:132–140

    Google Scholar 

  48. Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space optimization: a random search based on general relativity theory. Neural Evol Comput

  49. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  50. Slowik A, Kwasnicka H (2017) Nature inspired methods and their industry applications–swarm intelligence algorithms. IEEE Trans Ind Inf 99:1–1

    Google Scholar 

  51. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization—artificial ants as a computational intelligence technique. IEEE Comput Intell Mag 1:28–39

    Google Scholar 

  52. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. Springer, Berlin, pp 65–74

    MATH  Google Scholar 

  53. Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems. Springer, Berlin, pp 789–798

    MATH  Google Scholar 

  54. Yang XS, Deb S (2009) Cuckoo search via levy flights. In: World congress on nature biologically inspired computing, pp 210–214

  55. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. http://www.sciencedirect.com/science/article/pii/S0965997813001853 [Online]

  56. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7 [Online]

  57. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. http://www.sciencedirect.com/science/article/pii/S0950705115005043 [Online]

  58. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: International conference in swarm intelligence. Springer, pp 355–364

  59. Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm. In: Evolutionary computation (CEC), 2013 IEEE congress on IEEE, pp 2069–2077

  60. Ding K, Zheng S, Tan Y (2013) A GPU-based parallel fireworks algorithm for optimization. In: Proceedings of the 15th annual conference on genetic and evolutionary computation. ACM, pp 9–16

  61. Zheng S, Janecek A, Li J, Tan Y (2014) Dynamic search in fireworks algorithm. In: Evolutionary computation (CEC), 2014 IEEE congress on IEEE, pp 3222–3229

  62. Mucherino A, Seref O (2007) Monkey search: a novel metaheuristic search for global optimization. AIP conference proceedings 953(1)

  63. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Springer, Berlin, pp 23–55

    Google Scholar 

  64. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2(2):78–84. https://doi.org/10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  65. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Google Scholar 

  66. Wang Y, Wu S, Li D, Mehrabi S, Liu H (2016) A part-of-speech term weighting scheme for biomedical information retrieval. J Biomed Inf 63:379–389. http://www.sciencedirect.com/science/article/pii/S1532046416301125 [Online]

  67. Orozco-Henao C, Bretas A, Chouhy-Leborgne R, Herrera-Orozco A, Marin-Quintero J (2017) Active distribution network fault location methodology: a minimum fault reactance and fibonacci search approach. Int J Electr Power Energy Syst 84:232–241. http://www.sciencedirect.com/science/article/pii/S0142061516302307 [Online]

  68. Askarzadeh A (2014) Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun Nonlinear Sci Numer Simul 19(4):1213–1228

    MathSciNet  MATH  Google Scholar 

  69. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    MathSciNet  MATH  Google Scholar 

  70. Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 42(4):965–997

    Google Scholar 

  71. Shiqin Y, Jianjun J, Guangxing Y (2009) A dolphin partner optimization. In: Proceedings of the WRI global congress on intelligent systems, pp 124–128

  72. Lu X, Zhou Y (2008) A novel global convergence algorithm: bee collecting pollen algorithm. In: 4th international conference on intelligent computing, Springer, pp 518–525

  73. Oftadeh R, Mahjoob M, Shariatpanahi M (2010) A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput Math Appl 60(7):2087–2098. http://www.sciencedirect.com/science/article/pii/S0898122110005419 [Online]

  74. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Google Scholar 

  75. Digalakis J, Margaritis K (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506

    MathSciNet  MATH  Google Scholar 

  76. Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization. In: Technical report, Nanyang Technological University Singapore

  77. Brest J, Maučec MS, Bošković B (2017) Single objective real-parameter optimization: algorithm JSO. In: Evolutionary computation (CEC), 2017 IEEE congress on IEEE, pp 1311–1318

  78. Kaveh A (2014) Advances in metaheuristic algorithms for optimal design of structures. Springer, Berlin

    MATH  Google Scholar 

  79. Kaveh A, Ghazaan MI (2018) Meta-heuristic algorithms for optimal design of real-size structures. Springer, Berlin

    MATH  Google Scholar 

  80. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287. http://www.sciencedirect.com/science/article/pii/S0045782501003231 [Online]

  81. Kannan B, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Google Scholar 

  82. Gandomi AH, Yang X-S (2011) Benchmark problems in structural optimization. Springer, Berlin, pp 259–281

    MATH  Google Scholar 

  83. Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. Springer, Berlin, pp 652–662

    Google Scholar 

  84. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Construct Steel Res 65(8–9):1558–1568

    Google Scholar 

  85. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

    Google Scholar 

  86. Bichon CVCBJ (2004) Design of space trusses using ant colony optimization. J Struct Eng 130(5):741–751

    Google Scholar 

  87. Schutte J, Groenwold A (2003) Sizing design of truss structures using particle swarms. Struct Multidiscip Optim 25(4):261–269. https://doi.org/10.1007/s00158-003-0316-5 [Online]

  88. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system search algorithm. Struct Multidiscip Optim 41(6):893–911

    Google Scholar 

  89. Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87(17–18):1129–1140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Unimodal, multimodal, and fixed-dimension multimodal benchmark test functions

Appendix: Unimodal, multimodal, and fixed-dimension multimodal benchmark test functions

1.1 Unimodal benchmark test functions

1.1.1 Sphere model

$$\begin{aligned}&F_1(z)= \sum _{i=1}^{30} z_i^2\\&\quad -100 \le z_i \le 100 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \end{aligned}$$

1.1.2 Schwefel’s problem 2.22

$$\begin{aligned}&F_2(z)= \sum _{i=1}^{30} |z_i| + \prod _{i=1}^{30} |z_i| \\ \\&\quad -10 \le z_i \le 10 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.1.3 Schwefel’s problem 1.2

$$\begin{aligned}&F_3(z)= \sum _{i=1}^{30} \Big (\sum _{j=1}^i z_j\Big )^2 \\&\quad -100 \le z_i \le 100 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.1.4 Schwefel’s problem 2.21

$$\begin{aligned}&F_4(z)= \text {max}_i\{|z_i|, 1 \le i \le 30\}\\&\quad -100 \le z_i \le 100, \quad f_{\min } = 0, \quad \text {Dim} = 30 \\ \end{aligned}$$

1.1.5 Generalized Rosenbrock’s function

$$\begin{aligned}&F_5(z)= \sum _{i=1}^{29}[100(z_{i+1} - z_i^2)^2 + (z_i - 1)^2]\\&\quad -30 \le z_i \le 30 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.1.6 Step function

$$\begin{aligned}&F_6(z)= \sum _{i=1}^{30}(\lfloor {z_i + 0.5}\rfloor )^2 \\&\quad -100 \le z_i \le 100 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.1.7 Quartic function

$$\begin{aligned}&F_7(z)= \sum _{i=1}^{30} iz_i^4 + \text {random}[0,1]\\&\quad -1.28 \le z_i \le 1.28 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.2 Multimodal benchmark test functions

1.2.1 Generalized Schwefel’s problem 2.26

$$\begin{aligned}&F_8(z)= v_{i=1}^{30} - z_i \text {sin} (\sqrt{|z_i|})\\&\quad -500 \le z_i \le 500 , \quad f_{\min } = -12569.5 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.2.2 Generalized Rastrigin’s function

$$\begin{aligned}&F_9(z)= \sum _{i=1}^{30} [z_i^2 - 10\text {cos}(2\pi z_i) + 10]\\&\quad -5.12 \le z_i \le 5.12 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.2.3 Ackley’s function

$$\begin{aligned}&F_{10}(z)= -20\text {exp} \bigg (-0.2\sqrt{\dfrac{1}{30}\sum _{i=1}^{30} z_i^2}\bigg ) \\&\quad -\, \text {exp}\bigg (\dfrac{1}{30}\sum _{i=1}^{30} cos(2\pi z_i)\bigg ) +20 +e\\&\quad -\,32 \le z_i \le 32 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.2.4 Generalized Griewank function

$$\begin{aligned}&F_{11}(z)= \dfrac{1}{4000} \sum _{i=1}^{30} z_i^2 - \prod _{i=1}^{30} \text {cos} \bigg (\dfrac{z_i}{\sqrt{i}}\bigg ) + 1\\&\quad -600 \le z_i \le 600 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$

1.2.5 Generalized penalized functions

  • $$\begin{aligned}&F_{12}(z)= \dfrac{\pi }{30}\{10\text {sin}(\pi x_1) + \sum _{i=1}^{29}(x_i - 1)^2\\&\quad \times \, [1 + 10\text {sin}^2(\pi x_{i+1})] + (x_n - 1)^2 \} \\&\quad + \sum _{i=1}^{30}u(z_i, 10, 100, 4) \\ \\&\quad -50 \le z_i \le 50 , \quad f_{\min } = 0 , \quad \text {Dim} = 30 \\ \end{aligned}$$
  • $$\begin{aligned}&F_{13}(z)= 0.1\{\text {sin}^2(3\pi z_1) + \sum _{i=1}^{29}(z_i - 1)^2\\&\quad \times \,[1 + sin^2(3\pi z_i + 1)] + (z_n - 1)^2[1 + \text {sin}^2(2\pi z_{30})]\} \\&\quad + \sum _{i=1}^Nu(z_i, 5, 100, 4) \\&\quad -50 \le z_i \le 50 , \quad f_{\min } = 0 , \quad \text {Dim} = 30, \\ \end{aligned}$$

    where \(x_i = 1 + \dfrac{z_i+1}{4}\)

    $$\begin{aligned} u(z_i, a, k, m) = {\left\{ \begin{array}{ll} k(z_i - a)^m \quad \quad \quad z_i > a\\ 0 \quad \quad \quad \quad \quad \quad \quad -a<z_i<a\\ k(-z_i - a)^m \quad \quad z_i<-a \end{array}\right. } \\ \end{aligned}$$

1.3 Fixed-dimension multimodal benchmark test functions

1.3.1 Shekel’s Foxholes function

$$\begin{aligned}&F_{14}(z)= \bigg (\dfrac{1}{500} + \sum _{j=1}^{25}\dfrac{1}{j+\sum _{i=1}^2(z_i - a_{ij})^6}\bigg )^{-1} \\ \\&\quad -65.536 \le z_i \le 65.536 , \quad f_{\min } \approx 1 , \quad \text {Dim} = 2 \\ \end{aligned}$$
Table 24 Shekel’s Foxholes function \(F_{14}\)

1.3.2 Kowalik’s function

$$\begin{aligned}&F_{15}(z)= \sum _{i=1}^{11}\bigg [a_i - \dfrac{z_1(b_i^2+b_iz_2)}{b_i^2+b_iz_3+z_4}\bigg ]^2 \\ \\&\quad -5 \le z_i \le 5 , \quad f_{\min } \approx 0.0003075 , \quad \text {Dim} = 4 \\ \end{aligned}$$

1.3.3 Six-hump camel-back function

$$\begin{aligned}&F_{16}(z)= 4z_1^2 - 2.1z_1^4 + \dfrac{1}{3}z_1^6 + z_1z_2 - 4z_2^2 + 4z_2^4 \\ \\&\quad -5 \le z_i \le 5 , \quad f_{\min } = -1.0316285 , \quad \text {Dim} = 2 \\ \end{aligned}$$

1.3.4 Branin function

$$\begin{aligned}&F_{17}(z)= \bigg (z_2 - \dfrac{5.1}{4\pi ^2}z_1^2 + \dfrac{5}{\pi }z_1 - 6 \bigg )^2 + 10\bigg (1 - \dfrac{1}{8\pi }\bigg )\text {cos}z_1 + 10\\&\quad -5 \le z_1 \le 10 , \quad 0 \le z_2 \le 15 , \quad f_{\min } = 0.398 , \quad \text {Dim} = 2 \\ \end{aligned}$$

1.3.5 Goldstein–Price function

$$\begin{aligned}&F_{18}(z)= [1 + (z_1 + z_2 + 1)^2(19 - 14z_1 + 3z_1^2 \\&\quad -\, 14z_2 + 6z_1z_2 + 3z_2^2)] \\&\quad \times \, [30 + (2z_1 - 3z_2)^2 \\&\quad \times \, (18 - 32z_1 + 12z_1^2 + 48z_2 - 36z_1z_2 + 27z_2^2)] \\&\quad -\,2 \le z_i \le 2 , \quad f_{\min } = 3 , \quad \text {Dim} = 2 \\ \end{aligned}$$

1.3.6 Hartman’s family

  • $$\begin{aligned}&F_{19}(z)= -\sum _{i=1}^4c_i \text {exp}\left( -\sum _{j=1}^3 a_{ij}(z_j - p_{ij})^2\right) \\&\quad 0 \le z_j \le 1 , \quad f_{\min } = -3.86 , \quad \text {Dim} = 3 \\ \end{aligned}$$
  • $$\begin{aligned}&F_{20}(z)= -\sum _{i=1}^4c_i \text {exp}\left( -\sum _{j=1}^6 a_{ij}(z_j - p_{ij})^2\right) \\ \\&\quad 0 \le z_j \le 1 , \quad f_{\min } = -3.32 , \quad \text {Dim} = 6 \\ \end{aligned}$$
Table 25 Hartman function \(F_{19}\)

1.3.7 Shekel’s Foxholes function

  • $$\begin{aligned}&F_{21}(z)= -\sum _{i=1}^5[(X - a_i)(X - a_i)^T + c_i]^{-1}\\&\quad 0 \le z_i \le 10 , \quad f_{\min } = -10.1532 , \quad \text {Dim} = 4 \\ \end{aligned}$$
  • $$\begin{aligned}&F_{22}(z)= -\sum _{i=1}^7[(X - a_i)(X - a_i)^T + c_i]^{-1} \\&\quad 0 \le z_i \le 10 , \quad f_{\min } = -10.4028 , \quad \text {Dim} = 4 \\ \end{aligned}$$
  • $$\begin{aligned}&F_{23}(z)= -\sum _{i=1}^{10}[(X - a_i)(X - a_i)^T + c_i]^{-1} \\&\quad 0 \le z_i \le 10 , \quad f_{min} = -10.536 , \quad Dim = 4 \\ \end{aligned}$$
Table 26 Shekel’s Foxholes functions \(F_{21}, F_{22}, F_{23}\)
Table 27 Hartman function \(F_{20}\)

1.4 CEC-2017 benchmark test functions

The detailed descriptions of 15 well-known CEC-2017 benchmark test functions (C1–C30) are mentioned in Table 28.

Table 28 IEEE CEC-2017 benchmark test functions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, G. ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Engineering with Computers 37, 323–353 (2021). https://doi.org/10.1007/s00366-019-00826-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00826-w

Keywords

Navigation