Skip to main content
Log in

Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper proposes a new self-adaptive meta-heuristic (MH) algorithm for multiobjective optimisation. The adaptation is accomplished by means of estimation of distribution. The differential evolution reproduction strategy is modified and used in this dominance-based multiobjective optimiser whereas population-based incremental learning is used to estimate the control parameters. The new method is employed to solve aeroelastic multiobjective optimisation of an aircraft wing which optimises structural weight and flutter speed. Design variables in the aeroelastic design problem include thicknesses of ribs, spars and composite layers. Also, the ply orientation of the upper and lower composite skins are assigned as the design variables. Additional benchmark test problems are also use to validate the search performance of the proposed algorithm. The performance validation reveals that the proposed optimiser is among the state-of-the-art multiobjective meta-heuristics. The concept of using estimation of distribution algorithm for tuning meta-heuristic control parameters is efficient and effective and becomes a new direction for improving MH performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cavagna L, Ricci S, Travaglini L (2011) NeoCASS: an integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level. Prog Aerosp Sci 47:621–635. https://doi.org/10.1016/J.PAEROSCI.2011.08.006

    Article  Google Scholar 

  2. Pathan MV, Patsias S, Tagarielli VL (2018) A real-coded genetic algorithm for optimizing the damping response of composite laminates. Comput Struct 198:51–60. https://doi.org/10.1016/J.COMPSTRUC.2018.01.005

    Article  Google Scholar 

  3. Stanford BK, Jutte CV (2017) Comparison of curvilinear stiffeners and tow steered composites for aeroelastic tailoring of aircraft wings. Comput Struct 183:48–60. https://doi.org/10.1016/J.COMPSTRUC.2017.01.010

    Article  Google Scholar 

  4. Nielsen MWD, Johnson KJ, Rhead AT, Butler R (2017) Laminate design for optimised in-plane performance and ease of manufacture. Compos Struct 177:119–128. https://doi.org/10.1016/J.COMPSTRUCT.2017.06.061

    Article  Google Scholar 

  5. Li J, Narita Y (2014) Multi-objective design for aeroelastic flutter of laminated shallow shells under variable flow angles. Compos Struct 111:530–539. https://doi.org/10.1016/J.COMPSTRUCT.2014.01.026

    Article  Google Scholar 

  6. Werter NPM, De Breuker R (2016) A novel dynamic aeroelastic framework for aeroelastic tailoring and structural optimisation. Compos Struct 158:369–386. https://doi.org/10.1016/J.COMPSTRUCT.2016.09.044

    Article  Google Scholar 

  7. Caixeta PR, Marques FD (2018) Multiobjective optimization of an aircraft wing design with respect to structural and aeroelastic characteristics using neural network metamodel. J Braz Soc Mech Sci Eng 40:17. https://doi.org/10.1007/s40430-017-0958-7

    Article  Google Scholar 

  8. Sleesongsom S, Bureerat S (2013) New conceptual design of aeroelastic wing structures by multi-objective optimization. Eng Optim 45:107–122. https://doi.org/10.1080/0305215X.2012.661728

    Article  MathSciNet  Google Scholar 

  9. Sleesongsom S, Bureerat S, Tai K (2013) Aircraft morphing wing design by using partial topology optimization. Struct Multidiscip Optim 48:1109–1128. https://doi.org/10.1007/s00158-013-0944-3

    Article  MathSciNet  Google Scholar 

  10. Stodieck O, Cooper JE, Neild SA et al (2018) Slender-wing beam reduction method for gradient-based aeroelastic design optimization. AIAA J 56:4529–4545. https://doi.org/10.2514/1.J056952

    Article  Google Scholar 

  11. Kennedy G, Kenway G, Martins J (2014) Towards gradient-based design optimization of flexible transport aircraft with flutter constraints. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, American Institute of Aeronautics and Astronautics, Reston, Virginia. https://doi.org/10.2514/6.2014-2726

  12. Zhu W, Miao K, Li D (2019) Static aeroelastic models with integrated stiffness-contributing shell structures built by additive manufacturing. Eng Struct 187:352–361. https://doi.org/10.1016/J.ENGSTRUCT.2019.02.066

    Article  Google Scholar 

  13. Huo SH, Wang FS, Yuan Z, Yue ZF (2013) Composite wing elastic axis for aeroelasticity optimization design. Aircr Eng Aerosp Technol 85:10–15. https://doi.org/10.1108/00022661311294030

    Article  Google Scholar 

  14. Kaveh A, Bakhshpoori T (2016) Water evaporation optimization: a novel physically inspired optimization algorithm. Comput Struct 167:69–85. https://doi.org/10.1016/J.COMPSTRUC.2016.01.008

    Article  Google Scholar 

  15. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng Softw 59:53–70. https://doi.org/10.1016/J.ADVENGSOFT.2013.03.004

    Article  Google Scholar 

  16. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112–113:283–294. https://doi.org/10.1016/J.COMPSTRUC.2012.09.003

    Article  Google Scholar 

  17. Kaveh A, Zolghadr A (2016) A novel meta-heuristic algorithm: tug of war optimization. Iran Univ Sci Technol 6:469–492

    Google Scholar 

  18. Kaveh A, Kaveh A, Ilchi Ghazaan M (2017) A new meta-heuristic algorithm: vibrating particles system. Sci Iran 24:551–566. https://doi.org/10.24200/sci.2017.2417

    Article  MATH  Google Scholar 

  19. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  20. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/J.ADVENGSOFT.2015.01.010

    Article  Google Scholar 

  21. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search. Particle Swarm and Ant Colony for Structural Design Optimization. Springer, Berlin, Heidelberg, pp 159–198

    Book  Google Scholar 

  22. Kaveh A, Talatahari S (2008) A hybrid particle swarm and ant colony optimization for design of truss structures. ASIAN J Civ Eng (Build Hous) 9:329–348

    Google Scholar 

  23. Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes via hybrid Big Bang-Big Crunch algorithm. J Constr Steel Res 66:412–419. https://doi.org/10.1016/J.JCSR.2009.10.013

    Article  Google Scholar 

  24. Kaveh A, Bakhshpoori T, Afshari E (2014) An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm. Comput Struct 143:40–59. https://doi.org/10.1016/J.COMPSTRUC.2014.07.012

    Article  Google Scholar 

  25. Pholdee N, Bureerat S, Yıldız AR (2017) Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame. Int J Veh Des 73:20. https://doi.org/10.1504/IJVD.2017.082578

    Article  Google Scholar 

  26. Wan Z, Zhang B, Du Z, Yang C (2014) Aeroelastic two-level optimization for preliminary design of wing structures considering robust constraints. Chin J Aeronaut 27:259–265. https://doi.org/10.1016/J.CJA.2014.02.018

    Article  Google Scholar 

  27. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  28. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  29. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. TIK-Report. https://doi.org/10.3929/ETHZ-A-004284029

    Article  Google Scholar 

  30. Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Asme 12:A197–A208

    Article  Google Scholar 

  31. Beran PS, Strganac TW, Kim K, Nichkawde C (2004) Studies of store-induced limit-cycle oscillations using a model with full system nonlinearities. Nonlinear Dyn 37:323–339. https://doi.org/10.1023/B:NODY.0000045544.96418.bf

    Article  MATH  Google Scholar 

  32. Beran PS, Khot NS, Eastep FE et al (2004) Numerical analysis of store-induced limit-cycle oscillation. J Aircr 41:1315–1326. https://doi.org/10.2514/1.404

    Article  Google Scholar 

  33. Kefal A, Oterkus E, Tessler A, Spangler JL (2016) A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng Sci Technol an Int J 19:1299–1313. https://doi.org/10.1016/J.JESTCH.2016.03.006

    Article  Google Scholar 

  34. Katz J, Plotkin A (2004) Low-speed aerodynamics. Second Edition J Fluids Eng 126:293. https://doi.org/10.1115/1.1669432

    Article  MATH  Google Scholar 

  35. Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircr 9:189–191. https://doi.org/10.2514/3.44330

    Article  Google Scholar 

  36. Haddadpour H, Firouz-Abadi RD (2006) Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow. Thin-Walled Struct 44:931–936. https://doi.org/10.1016/J.TWS.2006.08.020

    Article  Google Scholar 

  37. Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms. ACM Comput Surv 48:1–35. https://doi.org/10.1145/2792984

    Article  Google Scholar 

  38. Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  39. Pholdee N, Bureerat S (2013) Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inf Sci (Ny) 223:136–152. https://doi.org/10.1016/j.ins.2012.10.008

    Article  MathSciNet  Google Scholar 

  40. Noilublao N, Bureerat S (2013) Simultaneous topology, shape, and sizing optimisation of plane trusses with adaptive ground finite elements using MOEAs. Math Probl Eng 2013:1–9. https://doi.org/10.1155/2013/838102

    Article  Google Scholar 

  41. Bureerat S, Srisomporn S (2010) Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithm. Eng Optim 42:305–323. https://doi.org/10.1080/03052150903143935

    Article  MathSciNet  Google Scholar 

  42. Gao J, Wang J (2010) WBMOAIS: a novel artificial immune system for multiobjective optimization. Comput Oper Res 37:50–61. https://doi.org/10.1016/J.COR.2009.03.009

    Article  MathSciNet  MATH  Google Scholar 

  43. Wansaseub K, Pholdee N, Bureerat S (2017) Optimal U-shaped baffle square-duct heat exchanger through surrogate-assisted self-adaptive differential evolution with neighbourhood search and weighted exploitation-exploration. Appl Therm Eng 118:455–463. https://doi.org/10.1016/j.applthermaleng.2017.02.100

    Article  Google Scholar 

  44. Tanabe R, Fukunaga A (2013) Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: 2013 IEEE congress on evolutionary computation, CEC 2013, Cancun, Mexico, pp 1952–1959. https://doi.org/10.1109/CEC.2013.6557798

  45. Niknam T, Azadfarsani E, Jabbari M (2012) A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration. Energy Convers Manag 54:7–16. https://doi.org/10.1016/j.enconman.2011.09.014

    Article  Google Scholar 

  46. Piotrowski AP (2018) L-SHADE optimization algorithms with population-wide inertia. Inf Sci (Ny) 468:117–141. https://doi.org/10.1016/j.ins.2018.08.030

    Article  Google Scholar 

  47. Bureerat S, Sleesongsom S (2020) Constraint handling technique for four-bar linkage path generation using self-adaptive teaching–learning-based optimization with a diversity archive. Eng Optim. https://doi.org/10.1080/0305215X.2020.1741566

    Article  Google Scholar 

  48. Neri F, Tirronen V (2009) Scale factor local search in differential evolution. Memetic Comput 1:153–171. https://doi.org/10.1007/s12293-009-0008-9

    Article  Google Scholar 

  49. Niknam T, Mojarrad HD, Nayeripour M (2010) A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch. Energy 35:1764–1778. https://doi.org/10.1016/j.energy.2009.12.029

    Article  Google Scholar 

  50. Whitacre JM, Pham TQ, Sarker RA (2006) Use of statistical outlier detection method in adaptive evolutionary algorithms. In: Proceedings of the 8th annual conference on genetic and evolutionary computation - GECCO ’06. ACM Press, New York, USA, pp 1345–1352. https://doi.org/10.1145/1143997.1144205

  51. Srisomporn S, Bureerat S (2008) Geometrical design of plate-fin heat sinks using hybridization of MOEA and RSM. IEEE Trans Compon Packag Technol 31:351–360. https://doi.org/10.1109/TCAPT.2008.916799

    Article  Google Scholar 

  52. Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  53. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  54. Ibrahim A, Rahnamayan S, Martin MV, Deb K (2016) EliteNSGA-III: an improved evolutionary many-objective optimization algorithm. In: 2016 IEEE congress on evolutionary computation (CEC). IEEE, Vancouver, Canada, pp 973–982. https://doi.org/10.1109/CEC.2016.7743895

  55. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Swiss Federal Institute of Technology Zurich

  56. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No.02TH8600), pp 825–830. https://doi.org/10.1109/CEC.2002.1007032

  57. Zhang Q, Zhou A, Zhao S et al (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC09-MOEA/CEC09-MOEA.htm

  58. Shim VA, Tan KC, Tan KK (2012) A hybrid adaptive evolutionary algorithm in the domination-based and decomposition-based frameworks of multi-objective optimization. In: 2012 IEEE congress on evolutionary computation, CEC 2012. IEEE. https://doi.org/10.1109/CEC.2012.6256485

  59. Shim VA, Tan KC, Tang H (2015) Adaptive memetic computing for evolutionary multiobjective optimization. IEEE Trans Cybern 45:610–621. https://doi.org/10.1109/TCYB.2014.2331994

    Article  Google Scholar 

  60. Liang Z, Song R, Lin Q et al (2015) A double-module immune algorithm for multi-objective optimization problems. Appl Soft Comput J 35:161–174. https://doi.org/10.1016/j.asoc.2015.06.022

    Article  Google Scholar 

  61. Chen B, Lin Y, Zeng W et al (2015) Modified differential evolution algorithm using a new diversity maintenance strategy for multi-objective optimization problems. Appl Intell 43:49–73. https://doi.org/10.1007/s10489-014-0619-9

    Article  Google Scholar 

  62. Emmerich M, Beume N, Naujoks B (2005) An EMO algorithm using the hypervolume measure as selection criterion. In: Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 62–76. https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from the Thailand Research Fund (RTA6180010) and the Royal Golden Jubilee Ph.D. program (PHD/0182/2559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natee Panagant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wansasueb, K., Pholdee, N., Panagant, N. et al. Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing. Engineering with Computers 38, 695–713 (2022). https://doi.org/10.1007/s00366-020-01077-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01077-w

Keywords

Navigation