Skip to main content
Log in

Trefftz-unsymmetric finite element for bending analysis of orthotropic plates

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This work develops a new four-node quadrilateral displacement-based Trefftz-type plate element for bending analysis of orthotropic plates within the framework of the unsymmetric finite element method (FEM). In the present formulation, the modified isoparametric interpolations are employed to formulate the element’s test functions in which the deflection is effectively enriched by the nodal rotation degrees of freedom (DOFs). Meanwhile, the element’s trial functions are determined based on the Trefftz functions that can a prior satisfy the governing equations of orthotropic Mindlin–Reissner plates. Numerical benchmark tests reveal that the new unsymmetric plate element is free of shear locking problem and can produce satisfactory results for both the displacement and stress resultant. In particular, it exhibits quite good tolerances to the gross mesh distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sangtarash H, Arab HG, Sohrabi MR, Ghasemi MR (2020) A high-performance four-node flat shell element with drilling degrees of freedom. Eng Comput. https://doi.org/10.1007/s00366-020-00974-4

    Article  Google Scholar 

  2. Wu C-j, Cen S, Shang Y (2020) Shape-free polygonal hybrid displacement-function element method for analyses of Mindlin-Reissner plates. Eng Comput. https://doi.org/10.1007/s00366-019-00922-x

    Article  Google Scholar 

  3. Hrabok M, Hrudey T (1984) A review and catalogue of plate bending finite elements. Comput Struct 19(3):479–495

    Article  Google Scholar 

  4. Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. J ApplMech Trans ASME 18(1):31–38

    Article  Google Scholar 

  5. Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND (2019) Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct 214:132–142. https://doi.org/10.1016/j.compstruct.2019.02.010

    Article  Google Scholar 

  6. Biswas D, Ray C (2019) An improved isoparametric quadratic element based on refined zigzag theory to compute interlaminar stresses of multilayered anisotropic plates. Int J Numer Methods Eng 119(12):1245–1278. https://doi.org/10.1002/nme.6090

    Article  MathSciNet  Google Scholar 

  7. Ruocco E, Reddy JN (2020) Buckling analysis of elastic-plastic nanoplates resting on a Winkler-Pasternak foundation based on nonlocal third-order plate theory. Int J Nonlinear Mech 121:103453. https://doi.org/10.1016/j.ijnonlinmec.2020.103453

    Article  Google Scholar 

  8. Vidal P, Gallimard L, Polit O (2018) Robust layerwiseC0 finite element approach based on a variable separation method for the modeling of composite and sandwich plates. Finite Elem Anal Des 139:1–13. https://doi.org/10.1016/j.finel.2017.10.001

    Article  MathSciNet  Google Scholar 

  9. Wang C, Sun X, Zhang X, Hu P (2018) High-order quasi-conforming triangular Reissner-Mindlin plate element. Eng Comput 35(8):2722–2752

    Article  Google Scholar 

  10. Wu F, Zeng W, Yao L, Liu G (2018) A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner-Mindlin plates. Appl Math Model 53:333–352

    Article  MathSciNet  Google Scholar 

  11. Wan D, Hu D, Natarajan S, Bordas SPA, Long T (2017) A linear smoothed quadratic finite element for the analysis of laminated composite Reissner-Mindlin plates. Compos Struct 180:395–411. https://doi.org/10.1016/j.compstruct.2017.07.092

    Article  Google Scholar 

  12. Leonetti L, Garcea G, Nguyen-Xuan H (2017) A mixed node-based smoothed finite element method (MNS-FEM) for elasticity. Eng Comput 33(4):819–834. https://doi.org/10.1007/s00366-017-0500-7

    Article  Google Scholar 

  13. Moldovan ID, Cismaşiu I (2018) FreeHyTE: a hybrid-Trefftz finite element platform. AdvEngSoftw 121:98–119

    Google Scholar 

  14. Liu B, Wang KY, Wang MH (2015) A Trefftz finite element method for solving axisymmetric Poisson’s equations. Appl Math Mech Chin Ed 36(2):140–148. https://doi.org/10.3879/j.issn.1000-0887.2015.02.003

    Article  Google Scholar 

  15. She Z, Wang KY, Li PC (2019) Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method. Compos Struct 224:110992. https://doi.org/10.1016/j.compstruct.2019.110992

    Article  Google Scholar 

  16. Teixeira de Freitas JA, Tiago C (2020) Hybrid-Trefftz stress elements for plate bending. Int J Numer Methods Eng 121(9):1946–1976. https://doi.org/10.1002/nme.6294

    Article  MathSciNet  Google Scholar 

  17. Kita E, Kamiya N (1995) Trefftz method: an overview. AdvEngSoftw 24(1–3):3–12

    MATH  Google Scholar 

  18. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2(7):1333–1336

    Article  Google Scholar 

  19. Petrolito J (1990) Hybrid-Trefftz quadrilateral elements for thick plate analysis. Comput Methods ApplMechEng 78(3):331–351. https://doi.org/10.1016/0045-7825(90)90005-7

    Article  MATH  Google Scholar 

  20. Ray MC (2019) A novel smart hybrid-Trefftz finite element for smart laminated composite plates. Int J Numer Methods Eng 120(6):707–726. https://doi.org/10.1002/nme.6153

    Article  MathSciNet  Google Scholar 

  21. Ray MC (2019) A novel hybrid-Trefftz finite element for symmetric laminated composite plates. Int J Mech Mater Des 15(3):1–18

    Article  Google Scholar 

  22. Petrolito J (2014) Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. Appl Math Model 38(24):5858–5869

    Article  MathSciNet  Google Scholar 

  23. Karkon M, Rezaiee-Pajand M (2016) Hybrid-Trefftz formulation for analysis of thick orthotropic plates. Aerosp Sci Technol 50:234–244

    Article  Google Scholar 

  24. Karkon M (2015) Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates. Compos Struct 134:460–474

    Article  Google Scholar 

  25. Cen S, Wu CJ, Li Z, Shang Y, Li CF (2019) Some advances in high-performance finite element methods. Eng Comput 36(8):2811–2834. https://doi.org/10.1108/EC-10-2018-0479

    Article  Google Scholar 

  26. Shang Y, Li CF, Zhou MJ (2019) A novel displacement-based Trefftz plate element with high distortion tolerance for orthotropic thick plates. Eng Anal Bound Elem 106:452–461. https://doi.org/10.1016/j.enganabound.2019.06.002

    Article  MathSciNet  MATH  Google Scholar 

  27. Long YQ, Xu Y (1994) Generalized conforming triangular membrane element with vertex rigid rotational freedoms. Finite Elem Anal Des 17(4):259–271

    Article  Google Scholar 

  28. Ooi ET, Rajendran S, Yeo JH (2007) Extension of unsymmetric finite elements US-QUAD8 and US-HEXA20 for geometric nonlinear analyses. Eng Comput 24(4):407–431

    Article  Google Scholar 

  29. Shang Y, Ouyang WG (2018) 4-Node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113(10):1589–1606

    Article  MathSciNet  Google Scholar 

  30. He P, Sun Q, Liang K (2019) Generalized modal element method: part II—application to eight-node asymmetric and symmetric solid-shell elements in linear analysis. Comput Mech 63(4):783–804

    Article  MathSciNet  Google Scholar 

  31. Cen S, Zhou GH, Fu XR (2012) A shape-free 8-node plane element unsymmetric analytical trial function method. Int J Numer Methods Eng 91(2):158–185

    Article  Google Scholar 

  32. Cen S, Zhou MJ, Fu XR (2011) A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput Struct 89(5):517–528

    Article  Google Scholar 

  33. Zhou PL, Cen S, Huang JB, Li CF, Zhang Q (2017) An unsymmetric 8-node hexahedral element with high distortion tolerance. Int J Numer Methods Eng 109(8):1130–1158. https://doi.org/10.1002/nme.5318

    Article  MathSciNet  Google Scholar 

  34. Cen S, Zhou PL, Li CF, Wu CJ (2015) An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal’s theorem. Int J Numer Methods Eng 103(7):469–500

    Article  MathSciNet  Google Scholar 

  35. Li Z, Cen S, Wu CJ, Shang Y, Li CF (2018) High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element US-ATFQ4. Int J Numer Methods Eng 114(9):931–954

    Article  MathSciNet  Google Scholar 

  36. Huang J, Cen S, Li Z, Li CF (2018) An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: linear formulations. Int J Numer Methods Eng 116(12–13):759–783

    Article  MathSciNet  Google Scholar 

  37. Li Z, Huang J, Cen S, Li C (2019) An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: geometric nonlinear formulations. Int J Numer Methods Eng 120(5):580–606

    Article  MathSciNet  Google Scholar 

  38. Xie Q, Sze K, Zhou Y (2016) Modified and Trefftzunsymmetric finite element models. Int J Mech Mater Des 12(1):53–70

    Article  Google Scholar 

  39. Shang Y, Li CF, Jia KY (2020) 8-Node hexahedral unsymmetric element with rotation DOFs for modified couple stress elasticity. Int J Numer Methods Eng 121(12):2683–2700. https://doi.org/10.1002/nme.6325

    Article  Google Scholar 

  40. Zhang YX, Kim KS (2004) Two simple and efficient displacement-based quadrilateral elements for the analysis of composite laminated plates. Int J Numer Methods Eng 61(11):1771–1796. https://doi.org/10.1002/nme.1123

    Article  MATH  Google Scholar 

  41. Wilt TE, Saleeb AF, Chang TY (1990) A mixed element for laminated plates and shells. Comput Struct 37(4):597–611. https://doi.org/10.1016/0045-7949(90)90048-7

    Article  Google Scholar 

  42. Bathe KJ, Dvorkin EN (1986) A formulation of general shell elements-the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722. https://doi.org/10.1002/nme.1620220312

    Article  MATH  Google Scholar 

  43. Cen S, Long YQ, Yao ZH, Chiew SP (2006) Application of the quadrilateral area co-ordinate method: a new element for Mindlin-Reissner plate. Int J Numer Methods Eng 66(1):1–45

    Article  Google Scholar 

  44. Batoz JL, Bentahar M (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Methods Eng 18(11):1655–1677. https://doi.org/10.1002/nme.1620181106

    Article  MATH  Google Scholar 

  45. Cen S, Shang Y, Li CF, Li HG (2014) Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate. Int J Numer Methods Eng 98(3):203–234

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant Numbers 11702133 and 12072154) and the Natural Science Foundation of Jiangsu Province (Grant Number BK20170772).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section provides the detailed calculations of the matrices \({{\varvec{\uplambda}}}\), \({{\varvec{\Lambda}}}\) and \({{\varvec{\upchi}}}\) shown in Eq. (29). The components of \({{\varvec{\uplambda}}}\) can be expressed as:

$$ {{\varvec{\uplambda}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\uplambda}}}^{w} } \\ {{{\varvec{\uplambda}}}^{\phi } } \\ \end{array} } \right], $$
(37)

in which the first part \( {{\varvec{\uplambda}}}^{w}\) is

$$ {{\varvec{\uplambda}}}^{w} = \left[ {\begin{array}{*{20}c} {w^{0}_{1} \left( {x_{1} ,y_{1} } \right)} & {w^{0}_{2} \left( {x_{1} ,y_{1} } \right)} & {w^{0}_{3} \left( {x_{1} ,y_{1} } \right)} & {\ldots} & {w^{0}_{12} \left( {x_{1} ,y_{1} } \right)} \\ {w^{0}_{1} \left( {x_{2} ,y_{2} } \right)} & {w^{0}_{2} \left( {x_{2} ,y_{2} } \right)} & {w^{0}_{3} \left( {x_{2} ,y_{2} } \right)} & {\ldots} & {w^{0}_{12} \left( {x_{2} ,y_{2} } \right)} \\ {w^{0}_{1} \left( {x_{3} ,y_{3} } \right)} & {w^{0}_{2} \left( {x_{3} ,y_{3} } \right)} & {w^{0}_{3} \left( {x_{3} ,y_{3} } \right)} & {\ldots} & {w^{0}_{12} \left( {x_{3} ,y_{3} } \right)} \\ {w^{0}_{1} \left( {x_{4} ,y_{4} } \right)} & {w^{0}_{2} \left( {x_{4} ,y_{4} } \right)} & {w^{0}_{3} \left( {x_{4} ,y_{4} } \right)} & {\ldots} & {w^{0}_{12} \left( {x_{4} ,y_{4} } \right)} \\ \end{array} } \right], $$
(38)

while \( {{\varvec{\uplambda}}}^{\phi }\) is obtained by

$$ {{\varvec{\uplambda}}}^{\phi } = {\mathbf{T}}_{n} {{\varvec{\Phi}}}, $$
(39)

in which

$$ ~{\mathbf{\Phi }} = \left[ {\begin{array}{*{20}c} {\psi _{{x1}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} & {\psi _{{x2}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} & \ldots & {\psi _{{x12}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} \\ {\psi _{{y1}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} & {\psi _{{y2}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} & \ldots & {\psi _{{y12}}^{0} \left( {x_{{A1}} ,y_{{A1}} } \right)} \\ \ldots & \ldots & {} & \ldots \\ {\psi _{{x1}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} & {\psi _{{x2}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} & \ldots & {\psi _{{x12}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} \\ {\psi _{{y1}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} & {\psi _{{y2}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} & \ldots & {\psi _{{y12}}^{0} \left( {x_{{B4}} ,y_{{B4}} } \right)} \\ \end{array} } \right], $$
(40)
$$ {\mathbf{T}}_{n} = \left[ {\begin{array}{*{20}c} {{\mathbf{T}}_{1} } & {} & {} & {} \\ {} & {{\mathbf{T}}_{2} } & {} & {} \\ {} & {} & {{\mathbf{T}}_{3} } & {} \\ {} & {} & {} & {{\mathbf{T}}_{4} } \\ \end{array} } \right], $$
(41)

with

$$ {\mathbf{T}}_{i} = \left[ {\begin{array}{*{20}c} {l_{ij} } & {m_{ij} } & {} & {} \\ {} & {} & {l_{ij} } & {m_{ij} } \\ \end{array} } \right],\;\;\left( {ij = 12,\;23,\;34,\;41} \right), $$
(42)

where \(l_{ij}\) and \(m_{ij}\) are the direction cosines of the element edge ij.

The matrix \({{\varvec{\Lambda}}}\) can also be divided into two parts as follows:

$$ {{\varvec{\Lambda}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\Lambda}}}^{w} } \\ {{{\varvec{\Lambda}}}^{\phi } } \\ \end{array} } \right], $$
(43)

in which the first part is

$$ {{\varvec{\Lambda}}}^{w} = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & 1 & 0 & 0 & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & 1 & 0 & 0 & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & 1 & 0 & 0 \\ \end{array} } \right], $$
(44)

while the second part can be calculated by:

$$ {{\varvec{\Lambda}}}^{\phi } = \left[ {\begin{array}{*{20}c} {{{\varvec{\Lambda}}}_{11}^{\phi } } & {{{\varvec{\Lambda}}}_{12}^{\phi } } & {} & {} \\ {} & {{{\varvec{\Lambda}}}_{22}^{\phi } } & {{{\varvec{\Lambda}}}_{23}^{\phi } } & {} \\ {} & {} & {{{\varvec{\Lambda}}}_{33}^{\phi } } & {{{\varvec{\Lambda}}}_{34}^{\phi } } \\ {{{\varvec{\Lambda}}}_{41}^{\phi } } & {} & {} & {{{\varvec{\Lambda}}}_{44}^{\phi } } \\ \end{array} } \right], $$
(45)

with

$$ {{\varvec{\Lambda}}}_{11}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{12} }}\left( {1 - s_{A1} } \right)y_{12} } & {\frac{1}{{l_{12} }}\left( {1 - s_{A1} } \right)x_{12} } \\ 0 & { - \frac{1}{{l_{12} }}\left( {1 - s_{B1} } \right)y_{12} } & {\frac{1}{{l_{12} }}\left( {1 - s_{B1} } \right)x_{12} } \\ \end{array} } \right],\;\;{{\varvec{\Lambda}}}_{12}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{12} }}s_{A1} y_{12} } & {\frac{1}{{l_{12} }}s_{A1} x_{12} } \\ 0 & { - \frac{1}{{l_{12} }}s_{B1} y_{12} } & {\frac{1}{{l_{12} }}s_{B1} x_{12} } \\ \end{array} } \right], $$
(46)
$$ {{\varvec{\Lambda}}}_{22}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{23} }}\left( {1 - s_{A2} } \right)y_{23} } & {\frac{1}{{l_{23} }}\left( {1 - s_{A2} } \right)x_{23} } \\ 0 & { - \frac{1}{{l_{23} }}\left( {1 - s_{B2} } \right)y_{23} } & {\frac{1}{{l_{23} }}\left( {1 - s_{B2} } \right)x_{23} } \\ \end{array} } \right],\;\;{{\varvec{\Lambda}}}_{23}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{23} }}s_{A2} y_{23} } & {\frac{1}{{l_{23} }}s_{A2} x_{23} } \\ 0 & { - \frac{1}{{l_{23} }}s_{B2} y_{23} } & {\frac{1}{{l_{23} }}s_{B2} x_{23} } \\ \end{array} } \right], $$
(47)
$$ {{\varvec{\Lambda}}}_{33}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{34} }}\left( {1 - s_{A3} } \right)y_{34} } & {\frac{1}{{l_{34} }}\left( {1 - s_{A3} } \right)x_{34} } \\ 0 & { - \frac{1}{{l_{34} }}\left( {1 - s_{B3} } \right)y_{34} } & {\frac{1}{{l_{34} }}\left( {1 - s_{B3} } \right)x_{34} } \\ \end{array} } \right],\;\;{{\varvec{\Lambda}}}_{34}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{34} }}s_{A3} y_{34} } & {\frac{1}{{l_{34} }}s_{A3} x_{34} } \\ 0 & { - \frac{1}{{l_{34} }}s_{B3} y_{34} } & {\frac{1}{{l_{34} }}s_{B3} x_{34} } \\ \end{array} } \right], $$
(48)
$$ {{\varvec{\Lambda}}}_{44}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{41} }}\left( {1 - s_{A4} } \right)y_{41} } & {\frac{1}{{l_{41} }}\left( {1 - s_{A4} } \right)x_{41} } \\ 0 & { - \frac{1}{{l_{41} }}\left( {1 - s_{A4} } \right)y_{41} } & {\frac{1}{{l_{41} }}\left( {1 - s_{A4} } \right)x_{41} } \\ \end{array} } \right],\;\;{{\varvec{\Lambda}}}_{41}^{\phi } = \left[ {\begin{array}{*{20}c} 0 & { - \frac{1}{{l_{41} }}s_{A4} y_{41} } & {\frac{1}{{l_{41} }}s_{A4} x_{41} } \\ 0 & { - \frac{1}{{l_{41} }}s_{B4} y_{41} } & {\frac{1}{{l_{41} }}s_{B4} x_{41} } \\ \end{array} } \right], $$
(49)

where \(S_{Ai}\) and \(S_{Bi}\) are illustrated as shown in Fig. 3.

Finally, the matrix \({{\varvec{\upchi}}}\) is given by:

$$ {{\varvec{\upchi}}} = \left[ {\begin{array}{*{20}c} {{{\varvec{\upchi}}}^{w} } \\ {{{\varvec{\upchi}}}^{\phi } } \\ \end{array} } \right], $$
(50)

with

$$ {{\varvec{\upchi}}}^{w} = \left[ {\begin{array}{*{20}c} {w^{*} \left( {x_{1} ,y_{1} } \right)} \\ {w^{*} \left( {x_{2} ,y_{2} } \right)} \\ {w^{*} \left( {x_{3} ,y_{3} } \right)} \\ {w^{*} \left( {x_{4} ,y_{4} } \right)} \\ \end{array} } \right], $$
(51)
$$ {{\varvec{\upchi}}}^{\phi } = {\mathbf{T}}_{n} {{\varvec{\Phi}}}^{*} , $$
(52)

in which \( {\mathbf{T}}_{n}\) is also given by Eq. (41) and

$$ {{\varvec{\Phi}}}^{*} = \left[ {\begin{array}{*{20}c} {\psi_{x}^{*} \left( {x_{A1} ,y_{A1} } \right)} \\ {\psi_{y}^{*} \left( {x_{A1} ,y_{A1} } \right)} \\ {\ldots} \\ {\psi_{x}^{*} \left( {x_{B4} ,y_{B4} } \right)} \\ {\psi_{y}^{*} \left( {x_{B4} ,y_{B4} } \right)} \\ \end{array} } \right]. $$
(53)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Liu, YD. & Liu, SX. Trefftz-unsymmetric finite element for bending analysis of orthotropic plates. Engineering with Computers 38 (Suppl 2), 1065–1079 (2022). https://doi.org/10.1007/s00366-020-01254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01254-x

Keywords

Navigation