Skip to main content

Advertisement

Log in

A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Thermal conductivity is a specific thermal property of soil which controls the exchange of thermal energy. If predicted accurately, the thermal conductivity of soil has a significant effect on geothermal applications. Since the thermal conductivity is influenced by multiple variables including soil type and mineralogy, dry density, and water content, its precise prediction becomes a challenging problem. In this study, novel computational approaches including hybridisation of two metaheuristic optimisation algorithms, i.e. firefly algorithm (FF) and improved firefly algorithm (IFF), with conventional machine learning techniques including extreme learning machine (ELM), adaptive neuro-fuzzy interface system (ANFIS) and artificial neural network (ANN), are proposed to predict the thermal conductivity of unsaturated soils. FF and IFF are used to optimise the internal parameters of the ELM, ANFIS and ANN. These six hybrid models are applied to the dataset of 257 soil cases considering six influential variables for predicting the thermal conductivity of unsaturated soils. Several performance parameters are used to verify the predictive performance and generalisation capability of the developed hybrid models. The obtained results from the computational process confirmed that ELM-IFF attained the best predictive performance with a coefficient of determination = 0.9615, variance account for = 96.06%, root mean square error = 0.0428, and mean absolute error = 0.0316 on the testing dataset (validation phase). The results of the models are also visualised and analysed through different approaches using Taylor diagrams, regression error characteristic curves and area under curve scores, rank analysis and a novel method called accuracy matrix. It was found that all the proposed hybrid models have a great ability to be considered as alternatives for empirical relevant models. The developed ELM-IFF model can be employed in the initial stages of any engineering projects for fast determination of thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

SVR:

Support vector regression

GPR:

Gaussian process regression

CNN:

Convolutional neural network

ANN:

Artificial neural network

adj.R 2 :

Adjusted Coefficient Of Determination

MAE:

Mean absolute error

MAPE:

Mean absolute percentage error

NS:

Nash–Sutcliffe efficiency

PI:

Performance Index

R 2 :

Coefficient of determination

VAF:

Variance account for

WI:

Willmott's Index of agreement

WMAPE:

Weighted mean absolute percentage error

S :

Saturation degree

n :

Porosity

γ d :

Dry density

QC:

Quartz content

CC:

Clay content

SC:

Sand content

GSHPs:

Ground source heat pumps

k r :

Normalised thermal conductivity

BTES:

Borehole thermal energy storage

TDR:

Time domain reflectometry

MLAs:

Machine learning algorithms

ANFIS:

Adaptive neuro-fuzzy interface system

DNN:

Deep neural network

OAs:

Optimisation algorithms

MOA:

Metaheuristic optimisation algorithm

PE:

Processing element

FIS:

Fuzzy inference system

FF:

Firefly algorithm

IFF:

Improved firefly algorithm

ELM:

Extreme learning machine

MFs:

Membership functions

SLFN:

Single-layer feed-forward network

m :

Population size

itr:

Maximum number of iterations

N :

Number of neurons

RMSE:

Root mean square error

ROC:

Receiver operating characteristic

REC:

Regression error characteristic

SE:

Squared error

AD:

Absolute deviation

AUC:

Area under the curve

TR:

Training

TS:

Testing

References

  1. Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56(2):81–122

    Article  Google Scholar 

  2. Amatya B, Soga K, Bourne-Webb P, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  3. Bowers J, Allen G, Olgun CG (2014) Ground-source bridge deck deicing systems using energy foundations. In: Geo-congress 2014: geo-characterization and modeling for sustainability, pp 2705–2714

  4. Dong Y, McCartney JS, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33(2):207–221

    Article  Google Scholar 

  5. Kersten MS (1949) Laboratory research for the determination of the thermal properties of soils. Minnesota Univ Minneapolis Engineering Experiment Station

  6. Johansen O (1975) Thermal conductivity of soils PhD thesis. Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA, p 44002

  7. Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458

    Article  Google Scholar 

  8. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14

    Article  Google Scholar 

  9. Barry-Macaulay D, Bouazza A, Wang B, Singh R (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52(11):1892–1900

    Article  Google Scholar 

  10. De Vries DA (1987) The theory of heat and moisture transfer in porous media revisited. Int J Heat Mass Transf 30(7):1343–1350

    Article  Google Scholar 

  11. Rizvi ZH, Zaidi HH, Akhtar SJ, Sattari AS, Wuttke F (2020) Soft and hard computation methods for estimation of the effective thermal conductivity of sands. Heat and Mass Transf 56:1947–1959

  12. Singh R, Bhoopal R, Kumar S (2011) Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach. Build Environ 46(12):2603–2608

    Article  Google Scholar 

  13. Zhang N, Zou H, Zhang L, Puppala AJ, Liu S, Cai G (2020) A unified soil thermal conductivity model based on artificial neural network. Int J Therm Sci 155:106414

    Article  Google Scholar 

  14. Singh T, Sinha S, Singh V (2007) Prediction of thermal conductivity of rock through physico-mechanical properties. Build Environ 42(1):146–155

    Article  Google Scholar 

  15. Zhang T, Wang C-j, Liu S-y, Zhang N, Zhang T-w (2020) Assessment of soil thermal conduction using artificial neural network models. Cold Reg Sci Technol 169:102907

    Article  Google Scholar 

  16. Wei H, Zhao S, Rong Q, Bao H (2018) Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int J Heat Mass Transf 127:908–916

    Article  Google Scholar 

  17. Chen L, Tran H, Batra R, Kim C, Ramprasad R (2019) Machine learning models for the lattice thermal conductivity prediction of inorganic materials. Comput Mater Sci 170:109155

    Article  Google Scholar 

  18. Esmaeili M, Osanloo M, Rashidinejad F, Bazzazi AA, Taji M (2014) Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng Comput 30(4):549–558

    Article  Google Scholar 

  19. Ebtehaj I, Bonakdari H, Shamshirband S (2016) Extreme learning machine assessment for estimating sediment transport in open channels. Eng Comput 32(4):691–704

    Article  Google Scholar 

  20. Harandizadeh H, Armaghani DJ, Khari M (2019) A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Eng Comput 37:685–700

  21. Armaghani DJ, Hasanipanah M, Mohamad ET (2016) A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Eng Comput 32(1):155–171

    Article  Google Scholar 

  22. Dang NM, Anh DT, Dang TD (2019) ANN optimized by PSO and Firefly algorithms for predicting scour depths around bridge piers. Eng Comput 37:293–303

  23. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-inspir Comput 2(2):78–84

    Article  Google Scholar 

  24. Zhou J, Li C, Arslan CA, Hasanipanah M, Amnieh HB (2019) Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting. Eng Comput:1–10

  25. Shariati M, Mafipour MS, Ghahremani B, Azarhomayun F, Ahmadi M, Trung NT et al (2020) A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng Comput:1–23. https://doi.org/10.1007/s00366-020-01081-0

  26. Wang B, Moayedi H, Nguyen H, Foong LK, Rashid ASA (2019) Feasibility of a novel predictive technique based on artificial neural network optimized with particle swarm optimization estimating pullout bearing capacity of helical piles. Eng Comput 36:1315–1324

  27. Zaji AH, Bonakdari H, Khameneh HZ, Khodashenas SR (2020) Application of optimized Artificial and Radial Basis neural networks by using modified Genetic Algorithm on discharge coefficient prediction of modified labyrinth side weir with two and four cycles. Measurement 152:107291

    Article  Google Scholar 

  28. Meshram SG, Singh VP, Kisi O, Karimi V, Meshram C (2020) Application of artificial neural networks, support vector machine and multiple model-ANN to sediment yield prediction. Water Resour Manage 34(15):4561–4575

    Article  Google Scholar 

  29. Kardani MN, Baghban A, Hamzehie ME, Baghban M (2019) Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach. Pet Sci Technol 37(16):1861–1867

    Article  Google Scholar 

  30. Ghanbari A, Kardani MN, Moazami Goodarzi A, Janghorban Lariche M, Baghban A (2020) Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant. Int J Ambient Energy 41(7):775–782

    Article  Google Scholar 

  31. Ebtehaj I, Bonakdari H, Es-haghi MS (2019) Design of a hybrid ANFIS–PSO model to estimate sediment transport in open channels. Iran J Sci Technol Trans Civ Eng 43(4):851–857

    Article  Google Scholar 

  32. Gholami A, Bonakdari H, Ebtehaj I, Mohammadian M, Gharabaghi B, Khodashenas SR (2018) Uncertainty analysis of intelligent model of hybrid genetic algorithm and particle swarm optimization with ANFIS to predict threshold bank profile shape based on digital laser approach sensing. Measurement 121:294–303

    Article  Google Scholar 

  33. Kardani N, Bardhan A, Kim D, Samui P, Zhou A (2021) Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO. J Build Eng 35:102105. https://doi.org/10.1016/j.jobe.2020.102105

  34. Xia R, Chen Y, Feng Y (2020) A method to measure thermal conductivity of vacuum insulation panel using enhanced extreme learning machine model. J Therm Sci 29(3):623–631

  35. Bonakdari H, Ebtehaj I, Samui P, Gharabaghi B (2019) Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, Gaussian process regression, and extreme learning machine. Water Resour Manage 33(11):3965–3984

    Article  Google Scholar 

  36. Maimaitiyiming M, Sagan V, Sidike P, Kwasniewski MT (2019) Dual activation function-based Extreme Learning Machine (ELM) for estimating grapevine berry yield and quality. Remote Sens 11(7):740

    Article  Google Scholar 

  37. Ebtehaj I, Bonakdari H, Gharabaghi B (2019) Closure to “An integrated framework of extreme learning machines for predicting scour at pile groups in clear water condition” by: I. Ebtehaj, H. Bonakdari, F. Moradi, B. Gharabaghi, Z. Sheikh Khozani. Coast Eng 147:135–137

    Article  Google Scholar 

  38. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  39. Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS ONE 2(4):e354

    Article  Google Scholar 

  40. Yang X-S, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36–50

    Article  Google Scholar 

  41. Yang X-S (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, Berlin, pp 209–218

    Chapter  Google Scholar 

  42. Tarnawski V, Momose T, McCombie M, Leong W (2015) Canadian field soils III. Thermal-conductivity data and modeling. Int J Thermophys 36(1):119–156

    Article  Google Scholar 

  43. Chen SX (2008) Thermal conductivity of sands. Heat Mass Transf 44(10):1241

    Article  Google Scholar 

  44. Zhang N, Yu X, Pradhan A, Puppala AJ (2015) Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction. J Mater Civ Eng 27(12):04015059

    Article  Google Scholar 

  45. McCombie M, Tarnawski V, Bovesecchi G, Coppa P, Leong W (2017) Thermal conductivity of pyroclastic soil (Pozzolana) from the environs of Rome. Int J Thermophys 38(2):21

    Article  Google Scholar 

  46. Tarnawski V, Tsuchiya F, Coppa P, Bovesecchi G (2019) Volcanic soils: inverse modeling of thermal conductivity data. Int J Thermophys 40(2):14

    Article  Google Scholar 

  47. Tokoro T, Ishikawa T, Shirai S, Nakamura T (2016) Estimation methods for thermal conductivity of sandy soil with electrical characteristics. Soils Found 56(5):927–936

    Article  Google Scholar 

  48. Tarnawski V, McCombie M, Momose T, Sakaguchi I, Leong W (2013) Thermal conductivity of standard sands. Part III. Full range of saturation. Int J Thermophys 34(6):1130–1147

    Article  Google Scholar 

  49. Kumar M, Samui P, Kumar D, Zhang W (2021) Reliability analysis of settlement of pile group. Innov Infrastruct Solut 6(1):1–17

    Article  Google Scholar 

  50. Kumar M, Samui P (2020) Reliability analysis of settlement of pile group in clay using LSSVM, GMDH. GPR Geotech Geol Eng 38(6):6717–6730

    Article  Google Scholar 

  51. Kumar M, Samui P (2019) Reliability analysis of pile foundation using ELM and MARS. Geotech Geol Eng 37(4):3447–3457

    Article  Google Scholar 

  52. Kardani MN, Baghban A, Sasanipour J, Mohammadi AH, Habibzadeh S (2018) Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids. J Clean Prod 203:601–618

    Article  Google Scholar 

  53. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  54. Kardani N, Zhou A, Nazem M, Shen S-L (2020) Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. J Rock Mech Geotech Eng

  55. Bi J, Bennett KP (2003) Regression error characteristic curves. In: Proceedings of the 20th international conference on machine learning (ICML-03), pp 43–50

  56. Kardani N, Zhou A, Nazem M, Shen S-L (2020) Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches. Geotech Geol Eng 38(2):2271–2291

    Article  Google Scholar 

  57. Kardani N, Zhou A, Nazem M, Lin X (2021) Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel 289:119903

    Article  Google Scholar 

  58. Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57(1):120–125

    Article  MathSciNet  MATH  Google Scholar 

  59. Bonakdari H, Binns AD, Gharabaghi B (2020) A comparative study of linear stochastic with nonlinear daily river discharge forecast models. Water Resour Manage 34(11):3689–3708

    Article  Google Scholar 

  60. Safari MJS, Ebtehaj I, Bonakdari H, Es-haghi MS (2019) Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. J Hydrol 577:123951

    Article  Google Scholar 

  61. Johansen O (1975) Thermal conductivity of soils, University of Trondheim, Trondheim, Norway. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH CRREL Draft English Translation, p 637

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Navid Kardani or Annan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardani, N., Bardhan, A., Samui, P. et al. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Engineering with Computers 38, 3321–3340 (2022). https://doi.org/10.1007/s00366-021-01329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01329-3

Keywords

Navigation