Skip to main content
Log in

Evolution of T-spline level sets for meshing non-uniformly sampled and incomplete data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Given a large set of unorganized point sample data, we propose a new framework for computing a triangular mesh representing an approximating piecewise smooth surface. The data may be non-uniformly distributed, noisy, and may contain holes. This framework is based on the combination of two types of surface representations, triangular meshes and T-spline level sets, which are implicit surfaces defined by refinable spline functions allowing T-junctions. Our method contains three main steps. Firstly, we construct an implicit representation of a smooth (C 2 in our case) surface, by using an evolution process of T-spline level sets, such that the implicit surface captures the topology and outline of the object to be reconstructed. The initial mesh with high quality is obtained through the marching triangulation of the implicit surface. Secondly, we project each data point to the initial mesh, and get a scalar displacement field. Detailed features will be captured by the displaced mesh. Finally, we present an additional evolution process, which combines data-driven velocities and feature-preserving bilateral filters, in order to reproduce sharp features. We also show that various shape constraints, such as distance field constraints, range constraints and volume constraints can be naturally added to our framework, which is helpful to obtain a desired reconstruction result, especially when the given data contains noise and inaccuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.: Point set surfaces. In: Proceedings of IEEE VIS’01, pp. 21–28. IEEE Press, Washington, DC (2001)

    Google Scholar 

  2. Allègre, R., Chaine, R., Akkouche, S.: Convection-driven dynamic surface reconstruction. In: Proceedings of SMI’05, pp. 33–42. IEEE Press, Washington, DC (2005)

    Google Scholar 

  3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. In: SCG’00: Proceedings of the 16th Annual Symposium on Computational Geometry, pp. 213–222. ACM, Boston (2000)

    Google Scholar 

  4. Apodaca, A., Gritz, L.: Advanced RenderMan: Creating CGI for motion pictures. Kaufmann, San Francisco (1999)

    Google Scholar 

  5. Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Sharpen &Bend: Recovering curved sharp edges in triangle meshes produced by feature-insensitive sampling. IEEE Trans. Vis. Comput. Graph. 11(2), 181–192 (2005)

    Article  Google Scholar 

  6. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  7. Boissonnat, J., Cazals, F.: Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comput. Geom. Theory Appl. 22(1), 185–203 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Botsch, M., Kobbelt, L.: A robust procedure to eliminate degenerate faces from triangle meshes. In: Proceedings of VMV’01, pp. 283–290. Aka, Berlin (2001)

    Google Scholar 

  9. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of SIGGRAPH’01, pp. 67–76. ACM, Boston (2001)

    Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Cheng, K.-S.D., Wang, W., Qin, H., Wong, K.-Y.K., Yang, H., Liu, Y.: Fitting subdivision surfaces to unorganized point data using SDM. In: Proceedings of PG’04, pp. 16–24. IEEE Press, Washington, DC (2004)

    Google Scholar 

  12. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH’98, pp. 115–122. ACM, Boston (1998)

    Google Scholar 

  13. Cook, R.: Shade trees. In: Proceedings of SIGGRAPH’84, pp. 223–231. ACM, Boston (1984)

    Google Scholar 

  14. Dey, T.K., Goswami, S.: Tight cocone: a water-tight surface reconstructor. In: Proceedings of SMI’03, pp. 127–134. IEEE Press, Washington, DC (2003)

    Google Scholar 

  15. Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proceedings of SIGGRAPH’96, pp. 325–334. ACM, Boston (1996)

    Google Scholar 

  16. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  17. Feichtinger, R., Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Dual evolution of planar parametric spline curves and T-spline level sets. Comput. Aided Des. 40(1), 13–24 (2008)

    Article  Google Scholar 

  18. Fleishman, S., Cohen-Or, D., Silva, C.: Robust moving least-squares fitting with sharp features. ACM Trans. Graph. (Proc. SIGGRAPH’05) 24(3), 544–552 (2005)

    Article  Google Scholar 

  19. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 950–953 (2003)

    Article  Google Scholar 

  20. Gavriliu, M., Carranza, J., Breen, D., Barr, A.: Fast extraction of adaptive multiresolution meshes with guaranteed properties from volumetric data. In: Proceedings of VIS’01, pp. 295–303. IEEE Press, Washington, DC (2001)

    Google Scholar 

  21. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10, 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gu, X., He, Y., Qin, H.: Manifold splines. Graph. Models 68(3), 23–254 (2006)

    Article  Google Scholar 

  23. Gumhold, S., Hüttner, T.: Multiresolution rendering with displacement mapping. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, pp. 55–66. ACM, Boston (1999)

    Chapter  Google Scholar 

  24. Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings of SIGGRAPH’00, pp. 95–102. ACM, Boston (2000)

    Google Scholar 

  25. Hartmann, E.: A marching method for the triangulation of surfaces. Visual Comput. 14(3), 95–108 (1998)

    Article  MATH  Google Scholar 

  26. Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH’96, pp. 99–108. ACM, Boston (1996)

    Google Scholar 

  27. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proceedings of SIGGRAPH’94, pp. 295–302. ACM, Boston (1994)

    Google Scholar 

  28. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3d models from non-uniformly sampled point clouds without normal information. In: Eurographics Symposium on Geometry Processing (SGP 2006), pp. 41–50. ACM, Boston (2006)

    Google Scholar 

  29. Hubeli, A., Gross, M.H.: Multiresolution feature extraction from unstructured meshes. In: Proceedings of of IEEE Visualization’01, pp. 16–25. IEEE Press, Washington, DC (2001)

    Google Scholar 

  30. Jeong, W.-K., Kim, C.-H.: Direct reconstruction of a displaced subdivision surface from unorganized points. Graph. Models 64(2), 78–93 (2002)

    Article  MATH  Google Scholar 

  31. Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 943–949 (2003)

    Article  Google Scholar 

  32. Jüttler, B., Felis, A.: Least squares fitting of algebraic spline surfaces. Adv. Comput. Math. 17, 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karkanis, T., Stewart, A.J.: Curvature-dependent triangulation of implicit surfaces. IEEE Comput. Graph. Appl. 21(2), 60–69 (2001)

    Article  Google Scholar 

  34. Kobbelt, L., Bareuther, T., Seidel, H.-P.: Multiresolution shape deformations for meshes with dynamic vertex connectivity. Comput. Graph. Forum (Proc. Eurographics’00) 19(3), 249–260 (2000)

    Article  Google Scholar 

  35. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of SIGGRAPH’96, pp. 313–324. ACM, Boston (1996)

    Google Scholar 

  36. Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: Proceedings of SIGGRAPH’00, pp. 85–94. ACM, Boston (2000)

    Google Scholar 

  37. Mederos, B., Amenta, N., Velho, L., de Figueiredo, L.H.: Surface reconstruction for noisy point clouds. In: Symposium on Geometry Processing, pp. 53–62. ACM, Boston (2005)

    Google Scholar 

  38. Miropolsky, A., Fischer, A.: Reconstruction with 3D geometric bilateral filter. In: 9th ACM Symposium on Solid Modeling and Applications, pp. 225–231. Genoa, Italy. ACM, Boston (2004)

    Google Scholar 

  39. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 463–470 (2003)

    Article  Google Scholar 

  40. Ohtake, Y., Belyaev, A., Seidel, H.-P.: 3d scattered data approximation with adaptive compactly supported radial basis functions. In: Proceedings of SMI’04, pp. 31–39. IEEE Press, Washington, DC (2004)

    Google Scholar 

  41. Ohtake, Y., Belyaev, A., Seidel, H.-P.: A composite approach to meshing scattered data. Graph. Models 68(3), 255–267 (2006)

    Article  MATH  Google Scholar 

  42. Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces. Springer, Berlin Heidelberg New York (2002)

    Google Scholar 

  43. Pauly, M., Keiser, R., Kobbelt, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 641–650 (2003)

    Article  Google Scholar 

  44. Qin, H., Mandal, C., Vemuri, B.C.: Dynamic catmull-clark subdivision surfaces. IEEE Trans. Vis. Comput. Graph. 4(3), 215–229 (1998)

    Article  Google Scholar 

  45. Raviv, A., Elber, G.: Three dimensional freeform sculpting via zero sets of scalar trivariate functions. In: Proceedings of 5th ACM Symposium on Solid Modeling and Applications, pp. 246–257. ACM, Boston (1999)

    Chapter  Google Scholar 

  46. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. (Proc. SIGGRAPH’03) 22(3), 477–484 (2003)

    Article  Google Scholar 

  47. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L., Cohen-Or, D.: Competing fronts for coarse-to-fine surface reconstruction. In: Proceedings of Eurographics’06, pp. 389–398. Blackwell, Oxford (2006)

    Google Scholar 

  48. Smith, S.M., Brady, J.M.: SUSAN – a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  49. Thompson, W.B., Owen, J.C., de St. Germain, H.J., Stark, S.R., Henderson, T.C.: Feature-based reverse engineering of mechanical parts. IEEE Trans. Robot. Autom. 12(1), 57–66 (1999)

    Article  Google Scholar 

  50. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of ICCV’98, pp. 839–846. IEEE Press, Washington, DC (1998)

    Google Scholar 

  51. Velho, L., Gomes, J., Figueiredo, L.H.: Implicit objects in computer graphics. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  52. Wang, C.: Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comput. Graph. 12(4), 629–639 (2006)

    Article  Google Scholar 

  53. Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum (Proc. Eurographics’01) 20(3), 385–392 (2001)

    Article  Google Scholar 

  54. Yang, H., Fuchs, M., Jüttler, B., Scherzer, O.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation. In: Proceedings of SMI’06, pp. 247–252. IEEE Press, Washington, DC (2006)

    Google Scholar 

  55. Yang, H., Jüttler, B.: Meshing non-uniformly sampled and incomplete data based on displaced T-spline level sets. In: Proceedings of SMI’07, pp. 251–260. IEEE Press, Washington, DC (2007)

    Google Scholar 

  56. Yoon, S.-H.: A surface displaced from a manifold. In: Proceedings of GMP’06, pp. 677–686. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  57. Zhao, H.-K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: VLSM ’01: Proceedings of the IEEE Workshop on Variational and Level Set Methods, pp. 194–201. IEEE Press, Washington, DC (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Jüttler, B. Evolution of T-spline level sets for meshing non-uniformly sampled and incomplete data. Visual Comput 24, 435–448 (2008). https://doi.org/10.1007/s00371-008-0222-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-008-0222-3

Keywords

Navigation