Skip to main content
Log in

HDR image retrieval by using color-based descriptor and tone mapping operator

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Various methods have been performed for the purpose of Low Dynamic Range (LDR) image retrieval. However, no major work concerning the High Dynamic Range (HDR) image indexing has been widely diffused yet. We therefore propose a method that tackles the problem of efficiently and accurately retrieving HDR images. The proposed system is based on a hybrid descriptor which combines two color features. The first one is histogram based on the hue–saturation–value (HSV) color space that approaches the perception of human vision, whereas the second comprises the first- and second-order moments of the color bands. As a dissimilarity measure, we retained the Manhattan distance. In the second part of our work, we proposed an automatic tone mapping operator (TMO) to get an overview on the result images by using Standard Dynamic Range (SDR) devices. Comparisons with recent state-of-the-art TMOs have shown that our TM method produces LDR images with adequate quality while maintaining low complexity. Finally, to test our retrieval system, we have created two databases. Experimental evaluation showed that our system supports HDR images while achieving satisfying results in terms of accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.empamedia.ethz.ch/hdrdatabase/index.php.

  2. http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/.

  3. http://wang.ist.psu.edu/docs/related/.

  4. http://www.mathworks.com/matlabcentral/linkexchange/links/2792-the-hdr-toolbox.

References

  1. Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced High Dynamic Range Imaging: Theory and Practice. AK Peters (CRC Press), Natrick (2011)

    Google Scholar 

  2. Banterle, F., Debattista, K., Artusi, A., Pattanaik, S., Myszkowski, K., Ledda, P., Chalmers, A.: High dynamic range imaging and low dynamic range expansion for generating HDR content. Comput. Graph. Forum 28(8), 2343–2367 (2009)

    Google Scholar 

  3. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of SIGGRAPH, pp. 369–378 (1997)

  4. Mitsunaga, T., Nayar, S.K.: Radiometric self calibration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 374–380 (1999)

  5. Ward, G.: Real pixels. Graph. Gems 2, 15–31 (1991)

    Google Scholar 

  6. Larson, G.W.: Logluv encoding for full-gamut, high-dynamic range images. J. Graph. Tools 3(1), 15–31 (1998)

    Google Scholar 

  7. Industrial Light & Magic. OpenEXR (2003). http://www.openexr.org. Accessed Jan 2018

  8. Debattista, K., Bashford-Rogers, T., Selmanović, E., Mukherjee, R., Chalmers, A.: Optimal exposure compression for high dynamic range content. Vis. Comput. 31(6), 1089–1099 (2015)

    Google Scholar 

  9. Xu, R., Pattanaik, S., Hughes, C.: High-dynamic-range still-image encoding in jpeg 2000. IEEE Comput. Graph. Appl. 25(6), 57–64 (2005)

    Google Scholar 

  10. Ward, G., Simmons, M.: Jpeg-hdr: a backwards-compatible, high dynamic range extension to jpeg. In: SIGGRAPH 05: ACM SIGGRAPH, Courses p. 2 (2005)

  11. Korshunov, P., Ebrahimi, T.: A JPEG backward-compatible HDR image compression. In: Proceedings of SPIE: Applications of Digital Image Processing XXXV. 8499 (2012)

  12. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2003)

    Google Scholar 

  13. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)

    Google Scholar 

  14. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: ACM Transactions on Graphics (TOG) Proceedings of ACM SIGGRAPH, vol. 21, no. 3, pp. 257–266 (2002)

  15. Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. Comput. Graph. Forum 11(1), 13–24 (2005)

    Google Scholar 

  16. Mertens, T., Kautz, J., Reeth, F.V.: Exposure fusion. In: Pacific Conference on Computer Graphics and Applications, pp. 382–90 (2007)

  17. Krawczyk, G., Myszkowski, K., Seidel, H.P.: Lightness perception in tone reproduction for high dynamic range images. Comput. Graph. Forum 24(3), 635–645 (2005)

    Google Scholar 

  18. Banterle, F., Artus, A., Sikudova, E., Edward, T., Bashford-Rogers, W., Ledda, P., Bloj, M., Chalmers, A.: Dynamic range compression by differential zone mapping based on psychophysical experiments. In: ACM Symposium on Applied Perception, pp. 39–46 (2012)

  19. Bruce, N.D.: Expoblend: information preserving exposure blending based on normalized log domain entropy. Comput. Graph. 39, 12–23 (2014)

    Google Scholar 

  20. Banterle, F., Ledda, P., Debattista, K., Chalmers, A., Bloj, M.: A framework for inverse tone mapping. Vis. Comput. 23(7), 467–478 (2007)

    Google Scholar 

  21. Masia, B., Agustin, S., Fleming, R.W., Sorkine, O., Gutierrez, D.: Evaluation of reverse tone mapping through varying exposure conditions. ACM Trans. Graph. 28(5), 1 (2009)

    Google Scholar 

  22. Masia, B., Serrano, A., Gutierrez, D.: Dynamic range expansion based on image statistics. Multimed. Tools Appl. 76(1), 631–648 (2017)

    Google Scholar 

  23. Kovaleski, R.P., Oliveira, M.M.: High-quality brightness enhancement functions for real-time reverse tone mapping. Vis. Comput. 25(5), 539–547 (2009)

    Google Scholar 

  24. Kovaleski, R.P., Oliveira, M.M.: High-Quality Reverse Tone Mapping for a Wide Range of Exposures. In: Conference on Graphics, Patterns and Images, pp. 49–56 (2014)

  25. Hristova, H., Le Meur, O., Cozot, R., Bouatouch, K.: High-dynamic-range image recovery from flash and non-flash image pairs. Vis. Comput. 33(6), 725–735 (2017)

    Google Scholar 

  26. Kabbai, L., Abdellaoui, M., Douik, A.: Image classification by combining local and global features. Vis. Comput. 35, 679–693 (2018)

    Google Scholar 

  27. Raj Singh, S., Kohli, S.: Enhanced CBIR using color moments, HSV histogram, color auto correlogram, and gabor texture. Int. J. Comput. Syst. 2, 161–165 (2015)

    Google Scholar 

  28. Shrivastava, N., Tyagi, V.: An efficient technique for retrieval of color images in large databases. Comput. Electr. Eng. 46, 314–327 (2015)

    Google Scholar 

  29. Swain, M.J., Ballard, D.H.: Colour indexing. Int. J. Comput. Vis. 7(1), 1–2 (1991)

    Google Scholar 

  30. Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recognit. 46(1), 188–198 (2013)

    Google Scholar 

  31. Stricker, M.A., Orengo, M.: Similarity of Color Images. In: Storage and Retrieval for Image and Video Databases (SPIE), pp. 381–392 (1995)

  32. Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 65–73 (1996)

  33. Huang, J., Kumar, S., Mitra, M., Zhu, W., Zabih, R.: Image indexing using color correlograms. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 762–768 (1997)

  34. Eidenberger, H.: How good are the visual MPEG-7 features? In: Visual Communications and Image Processing (2003)

  35. Lin, C.H., Chen, C.C., Lee, H.L., Liao, J.R.: Fast K-means algorithm based on a level histogram for image retrieval. Expert Syst. Appl. 41(7), 3276–3283 (2014)

    Google Scholar 

  36. Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10(1), 117–130 (2001)

    MATH  Google Scholar 

  37. Qi, X., Han, Y.: Incorporating multiple SVMs for automatic image annotation. Pattern Recognit. 40(2), 728–741 (2007)

    MATH  Google Scholar 

  38. Adams, A.: The Print. The Ansel Adams Photography series. Little, Brown and Company, Boston (1981)

    Google Scholar 

  39. Burger, W., Burge, M.J.: Principles of Digital Image Processing: Fundamental Techniques. Springer Undergraduate Topics in Computer Science. Springer, Berlin (2009)

    MATH  Google Scholar 

  40. Poularakis, A.: The Transforms and Applications Handbook. Electrical Engineering Handbook Series. CRC Press, Boca Raton (2000)

    Google Scholar 

  41. Zhu, X., Milanfar, P.: Automatic parameter selection for denoising algorithms using a no reference measure of image content. IEEE Trans. Image Process. 19(12), 3116–3132 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Yeganeh, V., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE Trans. Image Process. 22(2), 657–667 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Khwildi, R., Hachani, M., Ouled Zaid, A.: New indexing method of HDR images using color histograms. In: International conference on machine vision (2016)

  44. Khwildi, R., Ouled Zaid, A.: A new retrieval system based on low dynamic range expansion and SIFT descriptor. In: International Workshop on Multimedia Signal Processing (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoua Khwildi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khwildi, R., Ouled Zaid, A. HDR image retrieval by using color-based descriptor and tone mapping operator. Vis Comput 36, 1111–1126 (2020). https://doi.org/10.1007/s00371-019-01719-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01719-1

Keywords

Navigation