Skip to main content
Log in

Robust, fast and flexible symmetry plane detection based on differentiable symmetry measure

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Reflectional symmetry is a potentially very useful feature which many real-world objects exhibit. It is instrumental in a variety of applications such as object alignment, compression, symmetrical editing or reconstruction of incomplete objects. In this paper, we propose a novel differentiable symmetry measure, which allows using gradient-based optimization to find symmetry in geometric objects. We further propose a new method for symmetry plane detection in 3D objects based on this idea. The method performs well on perfectly as well as approximately symmetrical objects, it is robust to noise and to missing parts. Furthermore, it works on discrete point sets and therefore puts virtually no constraints on the input data. Due to flexibility of the symmetry measure, the method is also easily extensible, e.g., by adding more information about the input object and using it to further improve its performance. The proposed method was tested with very good results on many objects, including incomplete objects and noisy objects, and was compared to other state-of-the-art methods which it outperformed in most aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aim@shape. http://visionair.ge.imati.cnr.it/ontologies/shapes/ (2014). Accessed 2018-11-17

  2. Iccv’17 workshop challange results. https://sites.google.com/view/symcomp17/challenges/results?authuser=0#h.p_2Vlc6xTBFlbl (2017). Accessed 2020-09-08

  3. Caillière, D., Denis, F., Pele, D., Baskurt, A.: 3d mirror symmetry detection using hough transform. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 1772–1775. IEEE (2008)

  4. Chalás, I., Urbanová, P., Kotulanová, Z., Jandová, M., Králík, M., Kozlíková, B., Sochor, J.: Forensic 3d facial identification software (fidentis). In: Proceedings of the 20th World Meeting of the International Association of Forensic Sciences (2014)

  5. Cicconet, M., Hildebrand, D.G., Elliott, H.: Finding mirror symmetry via registration and optimal symmetric pairwise assignment of curves: Algorithm and results. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1759–1763 (2017)

  6. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference 2008, pp. 129–136 (2008)

  7. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. In: Computer Graphics Forum, vol. 17, pp. 167–174. Wiley Online Library, Oxford (1998)

  8. Combès, B., Hennessy, R., Waddington, J., Roberts, N., Prima, S.: Automatic symmetry plane estimation of bilateral objects in point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE (2008)

  9. Ecins, A., Fermuller, C., Aloimonos, Y.: Detecting reflectional symmetries in 3d data through symmetrical fitting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1779–1783 (2017)

  10. Fang, R., Godil, A., Li, X., Wagan, A.: A new shape benchmark for 3d object retrieval. In: International Symposium on Visual Computing, pp. 381–392. Springer, Berlin (2008)

  11. Funk, C., Lee, S., Oswald, M.R., Tsogkas, S., Shen, W., Cohen, A., Dickinson, S., Liu, Y.: 2017 ICCV challenge: detecting symmetry in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1692–1701 (2017)

  12. Hruda, L., Dvořák, J., Váša, L.: On evaluating consensus in ransac surface registration. In: Computer Graphics Forum, vol. 38, pp. 175–186. Wiley Online Library, Oxford (2019)

  13. Hruda, L., Kolingerová, I., Lávička, M.: Plane space representation in context of mode-based symmetry plane detection. In: Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J. (eds.) Computational Science—ICCS 2020, pp. 509–523. Springer, Cham (2020)

  14. Hruda, L., Kolingerová, I., Váša, L.: Robust, fast and flexible symmetry plane detection based on differentiable symmetry measure: supplementary material. http://meshcompression.org/tvcj-2020

  15. Ji, P., Liu, X.: A fast and efficient 3d reflection symmetry detector based on neural networks. Multimed. Tools Appl. 78(24), 35471–35492 (2019)

    Article  Google Scholar 

  16. Kakarala, R., Kaliamoorthi, P., Premachandran, V.: Three-dimensional bilateral symmetry plane estimation in the phase domain. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 249–256 (2013)

  17. Korman, S., Litman, R., Avidan, S., Bronstein, A.: Probably approximately symmetric: fast rigid symmetry detection with global guarantees. In: Computer Graphics Forum, vol. 34, pp. 2–13. Wiley Online Library, Oxford (2015)

  18. Kubásková, K.: Recognition of important features of triangulated human head models. In: Proceedings of the Central European Seminar on Computer Graphics. Smolenice, Slovakia (2016)

  19. Levoy, M., Gerth, J., Curless, B., Pull, K.: The stanford 3d scanning repository. http://www.graphics.stanford.edu/data/3Dscanrep/ (2005)

  20. Li, B.: Bo li homepage. https://sites.google.com/site/libohomepage/homepage. Accessed 2020-03-26

  21. Li, B., Johan, H., Ye, Y., Lu, Y.: Efficient 3d reflection symmetry detection: a view-based approach. Graph. Models 83, 2–14 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lipman, Y., Chen, X., Daubechies, I., Funkhouser, T.: Symmetry factored embedding and distance. In: ACM Transactions on Graphics (TOG), vol. 29, p. 103. ACM (2010)

  23. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  24. Martinet, A., Soler, C., Holzschuch, N., Sillion, F.X.: Accurate detection of symmetries in 3d shapes. ACM Trans. Graph. 25(2), 439–464 (2006)

    Article  Google Scholar 

  25. Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 560–568 (2006)

    Article  Google Scholar 

  26. Nagar, R., Raman, S.: Fast and accurate intrinsic symmetry detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 417–434 (2018)

  27. Nagar, R., Raman, S.: Detecting approximate reflection symmetry in a point set using optimization on manifold. IEEE Trans. Signal Process. 67(6), 1582–1595 (2019)

    Article  MathSciNet  Google Scholar 

  28. Nagar, R., Raman, S.: 3DSymm: robust and accurate 3d reflection symmetry detection. Pattern Recognit. 107, 107483 (2020)

    Article  Google Scholar 

  29. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  30. Panozzo, D., Lipman, Y., Puppo, E., Zorin, D.: Fields on symmetric surfaces. ACM Trans. Graph. 31(4), 111 (2012)

    Article  Google Scholar 

  31. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3d shapes. ACM Trans. Graph. 25(3), 549–559 (2006)

    Article  Google Scholar 

  32. Pottmann, H., Huang, Q.X., Yang, Y.L., Hu, S.M.: Geometry and convergence analysis of algorithms for registration of 3d shapes. Int. J. Comput. Vis. 67(3), 277–296 (2006)

    Article  Google Scholar 

  33. Prantl., M., Váša., L., Kolingerová., I.: Symmetry-aware registration of human faces. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications: GRAPP, vol. 1, pp. 185–192. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007254801850192

  34. Schiebener, D., Schmidt, A., Vahrenkamp, N., Asfour, T.: Heuristic 3d object shape completion based on symmetry and scene context. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 74–81. IEEE (2016)

  35. Shi, Z., Alliez, P., Desbrun, M., Bao, H., Huang, J.: Symmetry and orbit detection via lie-algebra voting. In: Computer Graphics Forum, vol. 35, pp. 217–227. Wiley Online Library, Oxford (2016)

  36. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Shape modeling applications, 2004. Proceedings, pp. 167–178. IEEE (2004)

  37. Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: hierarchical mesh segmentation based on planar symmetry. Symp. Geom. Process. 256, 111–119 (2006)

    Google Scholar 

  38. Sipiran, I., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3d meshes. In: Computer Graphics Forum, vol. 33, pp. 131–140. Wiley Online Library, Oxford (2014)

  39. Speciale, P., Oswald, M.R., Cohen, A., Pollefeys, M.: A symmetry prior for convex variational 3d reconstruction. In: European Conference on Computer Vision, pp. 313–328. Springer, Beerlin (2016)

  40. Sun, C., Sherrah, J.: 3d symmetry detection using the extended Gaussian image. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 164–168 (1997)

    Article  Google Scholar 

  41. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library, Oxford (2009)

  42. Sun, Y., Liang, Z., Huang, X., Huang, Q.: Joint map and symmetry synchronization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 251–264 (2018)

  43. Sung, M., Kim, V.G., Angst, R., Guibas, L.: Data-driven structural priors for shape completion. ACM Trans. Graph. 34(6), 175 (2015)

    Article  Google Scholar 

  44. T., T., Rieke-Zapp, D.: PRESIOUS 3d cultural heritage differential scans (2013). http://presious.eu/resources/3d-data-sets

  45. Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 2, pp. 1824–1831. IEEE (2005)

  46. Wang, H., Huang, H.: Group representation of global intrinsic symmetries. In: Computer Graphics Forum, vol. 36, pp. 51–61. Wiley Online Library, Oxford (2017)

  47. Wang, W., Ma, J., Xu, P., Chu, Y.: Intrinsic symmetry detection on 3d models with skeleton-guided combination of extrinsic symmetries. In: Computer Graphics Forum, vol. 38, pp. 617–628. Wiley Online Library, Oxford (2019)

  48. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  49. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1154–1166 (1995)

    Article  Google Scholar 

  50. Zhou, Q., Jacobson, A.: Thingi10k: a dataset of 10,000 3d-printing models. arXiv preprint arXiv:1605.04797 (2016)

Download references

Acknowledgements

This work was supported by Ministry of Education, Youth and Sports of the Czech Republic, project PUNTIS (LO1506) under the program NPU I and University specific research project SGS-2019-016 Synthesis and Analysis of Geometric and Computing Models. We would also like to thank the authors of [35] for providing us the implementation of their method together with all the information needed for its comparison to our method. Furthermore, we want to thank the authors of [27] for providing us the results of their method shown in Table 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukáš Hruda.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hruda, L., Kolingerová, I. & Váša, L. Robust, fast and flexible symmetry plane detection based on differentiable symmetry measure. Vis Comput 38, 555–571 (2022). https://doi.org/10.1007/s00371-020-02034-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-02034-w

Keywords

Navigation